
COMP 285 Practice Midterm Questions
The following are questions meant to help you practice, and cannot be
submitted for a grade.

Important Notes

● It is meant to give you a chance to do some practice questions after
having reviewed the slides, quizzes, in-class exercises, homeworks,
etc.

● It should give a rough sense of some ways questions might be posed,
though there’s no guarantee that the actual midterm will have the
exact same format (at a minimum, one difference is that the actual
midterm will show the point values associated with the questions).

● It should give a rough idea of the level of mastery expected generally,
though more/less mastery may be expected for any given topic.

Thanks for reading the notes above - the big picture thing is that I want to
be sure you use this resource appropriately, while at the same time do not
neglect the many other more comprehensive resources!



Asymptotic Analysis

1. O(n/100 + log(n) + 200) can be simplified to O(n). True or False?
True

2. 2x + x2/2 = Θ(x2 + 2x + x log(x)). True or False?
True

3. x + 20 = Ω(999). True or False?
True

For questions 4 - 6, refer to the containsDuplicates pseudocode.

algorithm containsDuplicates

input: size n vector of ints called vec

output: true if vec contains duplicates, false otherwise

for i = 0...n-1

for j = i + 1...n-1  // Notice we start at i + 1, not j

if vec[i] == vec[j]

return true

return false

4. What is the best-case runtime of containsDuplicates? Define n, provide a tight upper
bound with Big-O, and justify your answer.
O(1), where n is the size of vec.If the first two elements of vec are the same, then we will
return after a constant number of operations.

5. What is the worst-case runtime of containsDuplicates? Define n, provide a tight upper
bound with Big-O, and justify your answer.
O(n2), where n is the size of vec. The inner for loop will run roughly n/2 times, while the
outer for loop will run roughly n times. The innermost body is O(1) work, so we get O(n *
n/2 * 1) = O(n2).

6. What is the worst-case space complexity of containsDuplicates? Define n, provide a
tight upper bound with Big-O, and justify your answer.
O(1), where n is the size of vec. We are creating no new data structures that would take
up more than constant space. There is also no recursion (i.e. there are no stack frames
to account for).



Using the Right Tools

7. Which of the data structure implementations below have O(1) runtime on average for
element insertions? Select ALL that apply.

A stack (C++: std::stack)
A queue (C++: std::queue)
A hash set (C++: std::unordered_set)
A hash map (C++: std::unordered_map)
A priority queue (C++: std::priority_queue)

8. Given a vector of n integers, where each integer is at most d away from its correct
position in the sorted vector, complete the pseudocode in the box below that returns a
sorted array in O(n log(d)) time.

algorithm sort

input: d and an almost sorted vector vec of ints as described above

output: the sorted vector

m = new min priority queue of size d + 1

for i = 0...d

m.push(vec[i])

ret = new empty vector to be returned

i = d + 1

while !m.empty()

ret.push_back(m.pop())

if i < vec.size()

m.push(vec[i])

i++

return ret



Sorting

9. Which array of the following will RadixSort take the most number of steps on? Select
ONE.

a. [1, 2, 3, 4, 5, 6]
b. [5, 43, 3, 11, 6, 9]
c. [3, 1, 34, 3, 4, 81]
d. [4, 4754, 4, 24, 1, 33]

10. For each of the below, explain in 1 - 2 sentences what they mean with respect to sorting.
● Adaptive
If a sorting algorithm is adaptive, it will run more efficiently if the array is more
sorted.

● Stable
If a sorting algorithm is stable, elements of the same value will stay ordered relative
to each other in the output. For example {1, 4, 1*, 2} → {1, 1*, 2, 4} would be a
stable sort, because the star 1 is to the right of the non-starred 1 in both the input
and output.

● In-Place
If a sorting algorithm is in-place, we only use O(1) additional space.

11. Given an array is already sorted, which sort will take the least time? Select ONE.
a. Insertion Sort
b. Quick Sort
c. Merge Sort
d. Selection Sort



For questions 12 - 13, refer to quickSort provided.

algorithm quickSort

Input: vector<int> vec of size N

Output: vector<int> with sorted elements

if N < 2

return vec

pivot = findPivot(vec)

left = new empty vec

right = new empty vec

for index i = 0, 1, 2, ... N-2

if vec[i] <= pivot

left.push_back(vec[i])

else

right.push_back(vec[i])

return quickSort(left) + [pivot] + quickSort(right)

(Note: pseudocode from lecture, but the pivot is selected with “findPivot”)

12. Suppose findPivot is a function which finds the element that will partition the list in two
(nearly) equal halves in linear time while using constant space. What is the worst-case
runtime of quickSort in this case? Justify your answer.
If the pivot splits the list roughly into half, it can be represented as T(n) = 2 T(n/2) + X. To
find X, we note that there is O(n) work happening at each level: T(n) = 2 T(n/2) + O(n).
Using Master Theorem, we see the runtime is O(n log(n)).
OR
If the pivot splits the list roughly into half, we will have ~log(n) levels of work, with the
total amount of work happening at each level adding up to n (n on the first level, n/2 +
n/2 on the second level, n/4 + n/4 + n/4 + n/4 on the third level, etc). So we can multiply
n and log(n) to get O(n log(n)).

13. Challenge: what is the worst-case space complexity of quickSort in this case? Justify
your answer.
We create ~O(n) space at each level, but we need to keep track of how many stack
frames build up. At most, we’ll have roughly n + n/2 + n/4 + … space total pending on
the call stack (adding up the one pending stack frame from each of the levels when the
base case is reached). Simplifying, n (1 + 1/2 + 1/4 + …) is roughly O(2n) = O(n) space.



Master Theorem
14. Find the tight upper-bound of an algorithm with the following recurrence relation:

T(n) = T(n/2) + O(1). You may show your work for partial credit.

a = 1, b = 2, k = 0, so logab = log21 = 0
k = 0
We see k and the log are are equal, meaning this is the case of Master Theorem where
the runtime is n0log(n) which simplifies to O(log(n))

15. Write a recurrence relation for MergeSort. You may show your work for partial credit.

We split the list in half (b=2) and call on each half (a = 2). In each function call outside of
the recursion, we’re doing O(n) work. So we have
T(n) = 2 T(n/2) + O(n)



Trees

16. Is the tree on the right a Binary Search Tree? Explain.
No. The left subtree of 10 contains 12, which is greater
than it. If the 12 were a 9, for example, then it would be a
Binary Search Tree.

17. What would a post-order traversal of this tree print out?
-11, -6, -9, -2, 12, 8, 10, 6

18. Complete the recursive case of countAtLevel in the box, which counts the number of
nodes at each level in a Tree.

algorithm countAtLevel

input: TreeNode root and a level k

output: the number of nodes at level k in root

if level == 0  // base case

return 1

total = 0

for each element child in root->getChildren()

total += countAtLevel(child, level-1)

return total

19. What is the best-case runtime of removing a node for a “regular” (i.e. not AVL) BST.
Give an example of when the best-case happens.
O(1). Example: if we are removing the minimum value, and the minimum value has no
children (e.g. removing the root of a tree that looks like a linked list by only having “right”
children).



20. What is the worst-case runtime of searching for a node in a balanced (e.g. AVL) BST.
Give an example of when the worst-case happens.
O(log(n)) because searching in a tree is O(height of the tree) and the height of a
balanced tree is O(log(n)). This happens when we are searching for one of the leaves.

For question 21, use the following pseudocode

BSTremove(t, v) // from visualgo.net

search for v

if v is a leaf

delete leaf v

else if v has 1 child

bypass v

else replace v with successor

21. Draw what the BST t below will look like after BSTremove(t, 8)



Graphs
Use the following adjacency list, to answer questions 22 - 23

0: {1}

1: {3, 4}

2: {0}

3: {1, 2}

4: {}

22. Represent this Graph as an adjacency matrix. Recall that m[a][b] = 1 means that
there's a directed edge from Node(a) to Node(b)
{
{0, 1, 0, 0, 0},
{0, 0, 0, 1, 1},
{1, 0, 0, 0, 0},
{0, 1, 1, 0, 0},
{0, 0, 0, 0, 0}

}

23. Does this graph have cycles? If yes, identify them.
Yes, 1-3 and 0-1-3-2

Use the following DAG to answer questions 24 - 26.

24. How many source nodes are there?
3 (F, D, G)



25. How many sink nodes are there?
2 (A, D)

26. Provide one valid topological sort for this DAG
G, D, F, E, C, B, A

For questions 27 - 29, use the below.

Wildlife scientists observe elephants in Serengeti National Park. Although the elephant herds
may rarely be seen altogether, the scientists want to understand the average herd size, so they
record all elephant “interactions” they observe over 3 months. Assume:

● The scientists can uniquely identify each elephant.
● Elephants will only ever “interact” with other elephants in their same herd.
● Elephants can only belong to one herd.

27. In order to solve this problem, we can represent this as a graph. What are the nodes and
edges?
Nodes are each elephant (which can be uniquely identified). Edges are interactions.
There is an edge between elephant A and B if a scientist has observed an “interaction”
between them.

28. Which graph properties apply to this graph? Select ALL that apply.
Undirected
Acyclic
Weighted

29. How would you solve this problem leveraging graph algorithms we’ve covered? Explain
which algorithm you would use in words AND how you would use it to produce the
average herd size amongst all observed elephants.

● The key insight is to realize that all connected components are a herd.
● Do a BFS (or DFS) starting from any elephant and find all elephants reachable

from that elephant. This represents one herd, so we increment our herd count.
● Repeat the process until all elephants have been reached.
● Take the total number of elephants divided by the number of connected

components.


