
COMP 285 Practice Midterm Questions
The following are questions meant to help you practice, and cannot be
submitted for a grade.

Important Notes

● It is meant to give you a chance to do some practice questions after
having reviewed the slides, quizzes, in-class exercises, homeworks,
etc.

● It should give a rough sense of some ways questions might be posed,
though there’s no guarantee that the actual midterm will have the
exact same format (at a minimum, one difference is that the actual
midterm will show the point values associated with the questions).

● It should give a rough idea of the level of mastery expected generally,
though more/less mastery may be expected for any given topic.

Thanks for reading the notes above - the big picture thing is that I want to
be sure you use this resource appropriately, while at the same time do not
neglect the many other more comprehensive resources!

Asymptotic Analysis

1. O(n/100 + log(n) + 200) can be simplified to O(n). True or False?

2. 2x + x2/2 = Θ(x2 + 2x + x log(x)). True or False?

3. x + 20 = Ω(999). True or False?

For questions 4 - 6, refer to the containsDuplicates pseudocode.

algorithm containsDuplicates

input: size n vector of ints called vec

output: true if vec contains duplicates, false otherwise

for i = 0...n-1

for j = i + 1...n-1 // Notice we start at i + 1, not j

if vec[i] == vec[j]

return true

return false

4. What is the best-case runtime of containsDuplicates? Define n, provide a tight upper
bound with Big-O, and justify your answer.

5. What is the worst-case runtime of containsDuplicates? Define n, provide a tight upper
bound with Big-O, and justify your answer.

6. What is the worst-case space complexity of containsDuplicates? Define n, provide a
tight upper bound with Big-O, and justify your answer.

Using the Right Tools

7. Which of the data structure implementations below have O(1) runtime on average for
element insertions? Select ALL that apply.

A stack (C++: std::stack)
A queue (C++: std::queue)
A hash set (C++: std::unordered_set)
A hash map (C++: std::unordered_map)
A priority queue (C++: std::priority_queue)

8. Given a vector of n integers, where each integer is at most d away from its correct
position in the sorted vector, complete the pseudocode in the box below that returns a
sorted array in O(n log(d)) time.

algorithm sort

input: d and an almost sorted vector vec of ints as described above

output: the sorted vector

m = new min priority queue of size d + 1

for i = 0...d

m.push(vec[i])

ret = new empty vector to be returned

i = d + 1

while !m.empty()

if i < vec.size()

m.push(vec[i])

i++

return ret

Sorting

9. Which array of the following will RadixSort take the most number of steps on? Select
ONE.

a. [1, 2, 3, 4, 5, 6]
b. [5, 43, 3, 11, 6, 9]
c. [3, 1, 34, 3, 4, 81]
d. [4, 4754, 4, 24, 1, 33]

10. For each of the below, explain in 1 - 2 sentences what they mean with respect to sorting.
● Adaptive

● Stability

● In-Place

11. Given an array is already sorted, which sort will take the least time? Select ONE.
a. Insertion Sort
b. Quick Sort
c. Merge Sort
d. Selection Sort

For questions 12 - 13, refer to quickSort provided.

algorithm quickSort

Input: vector<int> vec of size N

Output: vector<int> with sorted elements

if N < 2

return vec

pivot = findPivot(vec)

left = new empty vec

right = new empty vec

for index i = 0, 1, 2, ... N-2

if vec[i] <= pivot

left.push_back(vec[i])

else

right.push_back(vec[i])

return quickSort(left) + [pivot] + quickSort(right)

12. Suppose findPivot is a function which finds the element that will partition the list in two
(nearly) equal halves in linear time while using constant space. What is the worst-case
runtime of quickSort in this case? Justify your answer.

13. Challenge: what is the worst-case space complexity of quickSort in this case? Justify
your answer.

Master Theorem
14. Find the runtime of an algorithm described by the following recurrence relation:

T(n) = T(n/2) + O(1). You may show your work for partial credit.

15. Write a recurrence relation for MergeSort. You may show your work for partial credit.

Trees

16. Is the tree on the right a Binary Search Tree? Explain.

17. What would a post-order traversal of this tree print out?

18. Complete the recursive case of countAtLevel in the box, which counts the number of
nodes at each level in a Tree.

algorithm countAtLevel

input: TreeNode root and a level k

output: the number of nodes at level k in root

if level == 0 // base case

return 1

total = 0

for each element child in root->getChildren()

total +=

return total

19. What is the best-case runtime of removing a node for a “regular” (i.e. not Red-Black)
BST. Give an example of when the best-case happens.

20. What is the worst-case runtime of searching for a node in a balanced (e.g. AVL) BST.
Give an example of when the worst-case happens.

For question 21, use the following pseudocode

BSTremove(t, v) // from visualgo.net

search for v

if v is a leaf

delete leaf v

else if v has 1 child

bypass v

else replace v with successor

21. Draw what the BST t below will look like after BSTremove(t, 8)

Graphs
Use the following adjacency list, to answer questions 22 - 23

0: {1}

1: {3, 4}

2: {0}

3: {1, 2}

4: {}

22. Represent this Graph as an adjacency matrix. Recall that m[a][b] = 1 means that
there's a directed edge from Node(a) to Node(b)

23. Does this graph have cycles? If yes, identify them.

Use the following DAG to answer questions 24 - 26.

24. How many source nodes are there?

25. How many sink nodes are there?

26. Provide one valid topological sort for this DAG

For questions 27 - 29, use the below.

Wildlife scientists observe elephants in Serengeti National Park. Although the elephant herds
may rarely be seen altogether, the scientists want to understand the average herd size, so they
record all elephant “interactions” they observe over 3 months. Assume:

● The scientists can uniquely identify each elephant.
● Elephants will only ever “interact” with other elephants in their same herd.
● Elephants can only belong to one herd.

27. In order to solve this problem, we can represent this as a graph. What are the nodes and
edges?

28. Which graph properties apply to this graph? Select ALL that apply.
Undirected
Acyclic
Weighted

29. How would you solve this problem leveraging graph algorithms we’ve covered? Explain
which algorithm you would use in words AND how you would use it to produce the
average herd size amongst all observed elephants.

