
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 9

Randomized Algorithms and QuickSort

Today we will study another sorting algorithm: Quicksort, which was invented in 1959 by
Tony Hoare. You may wonder why we want to study a new sorting algorithm. We have
already studied MergeSort, which we showed to perform significantly better than the trivial
O(n2) algorithm. While MergeSort achieves an O(n log n) worst-case asymptotic bound, in
practice, there are a number of implementation details about MergeSort that make it tricky
to achieve high performance. Quicksort is an alternative algorithm, which is simpler to
implement in practice. Quicksort will also use a divide and conquer strategy but will use
randomization to improve the performance of the algortithm in expectation. Java, Unix, and
C stdlib all have implementations of Quicksort as one of their built-in sorting routines.

1 QuickSort Overview

As in all sorting algorithms, we start with an array A of n numbers; again we assume without
loss of generality that the numbers are distinct1. Quicksort is very similar to the QuickSort
algorithm we studied last lecture. The description of Quicksort is the following:

Algorithm 1: QuickSort(A)
if n = 1 then

return A
end if
p ← RandomPivot(A)
A< ← {A[i ] | A[i ] < p}
A> ← {A[i ] | A[i ] > p}
A′< ← QuickSort(A<)
A′> ← QuickSort(A>)
return [A′<, p, A′>]

The above steps define a “partition” function on A. The partition function of Quicksort
can vary depending on how the pivot is chosen and also on the implementation. Quicksort
is often used in practice because we can implement this step in linear time, and with very
small constant factors. In addition, the rearrangement can actually be done in-place, rather
than making several copies of the array (as is done in MergeSort). In these notes we will
not describe the details of an in-place implementation, but the pseudocode can be found in
CLRS.

1What does it mean to say that we can assume something without loss of generality? Why can we make
this assumption without loss of generality in this proof?
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2 Speculation on the Runtime

The performance of Quicksort depends on which element is chosen as the pivot. Assume
that we choose the kth smallest element; then |A<| = k − 1, |A>| = n− k . This allows us to
write a recurrence; let T (n) be the runtime of Quicksort on an n-element array. We know
the partition step takes O(n) time; therefore the recurrence is

T (n) ≤ cn + T (k − 1) + T (n − k)

For the worst pivot choice (the maximum or minimum element in the array2), the runtime
satisfies the recurrence T (n) = T (n − 1) +O(n); hence T (n) = O(n2).

One way that seems optimal to define the partition function is to pick the median as the
pivot. In the above recurrence this would mean that k = dn

2
e. We showed in the previous

lecture that the algorithm Select can find the median element in linear time. Therefore the
recurrence becomes T (n) ≤ cn+2T (n2). This is exactly the same recurrence as MergeSort,
which means that this algorithm is guaranteed to run in O(n log n) time.

Unfortunately, the median selection algorithm is not practical; while it runs in linear time, it
has much larger constant factors than we would like. To improve it, we will explore some
alternative methods for choosing a pivot.

We leave the proof of correctness of Quicksort as an exercise to the reader (hint: use
induction).

3 Random Pivot Selection

Our discussion so far suggests two approaches to pivot selection: (1) We could pick an
arbitrary element as a pivot. This is super simple and takes O(1) time (good), but the worst
case running time of the resulting algorithm would be O(n2) (bad). (2) We could pick the
median as the pivot. This takes O(n) time and is somewhat complicated (bad), but gives a
worst case running time of O(n log n) (good). Can we get the best of both worlds?

One method of “defending” against making a bad pivot choice is to choose a random element
as the pivot. We observe that it is unlikely that the random element will be either the
median (best-case) or the maximum or minimum (worst-case). Note that we have a uniform
distribution over the n order statistics of the array (this is a fancy way of saying: for every
1 ≤ i ≤ n we pick the i-th highest element with the same probability 1

n
). Let’s pause for a

moment. This is the first time in this course that we have encountered an algorithm that uses
randomness in its execution. Such an algorithm (that “flips coins” and takes actions based
on the outcome of these coin flips) is called a randomized algorithm. How do we analyze a
randomized algorithm?

22Why are these the worst pivot choices?
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