
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 8

Median of Medians

1 Introduction

We ended last lecture with a few ideas on how we could solve the kSelect problem. The only
difference between the ideas involved how we chose the ‘pivot’ ! In this lecture, we’ll cover a
deterministic mechanism for chosing a pivot. As a refresher, here is the pseudo-code for the
divide-and-conquer approach to the kSelect problem.

Algorithm 1: Select(A, n, k)
if n = 1 then
return A[1]

end if
p ← ChoosePivot(A, n)

A< ← {A[i ] | A[i ] < p}
A> ← {A[i ] | A[i ] > p}
if |A<| = k − 1 then
return p

else if |A<| > k − 1 then
return Select(A<, |A<|, k)

else if |A<| < k − 1 then
return Select(A>, |A>|, k − |A<| − 1)

end if

2 Choose a pivot “close enough” to the median

Given a linear-time median algorithm, we can solve the selection problem in linear time (and
vice versa). Although ideally we would want to find the median, notice that as far as cor-
rectness goes, there was nothing special about partitioning around the median. We could
use this same idea of partitioning and recursing on a smaller problem even if we partition
around an arbitrary element. To get a good runtime, however, we need to guarantee that
the subproblems get smaller quickly. In 1973, Blum, Floyd, Pratt, Rivest, and Tarjan came
up with the Median of Medians algorithm. It is similar to the algorithm we covered in the
last lecture, but rather than partitioning around the exact median, uses a surrogate “median
of medians”. We update ChoosePivotaccordingly.

1



Algorithm 2: ChoosePivot(A, n)
Split A into g = dn/5e groups p1, · · · , pg
for i = 1 to g do
pi ← MergeSort(pi)

end for
C ← {median of pi | i = 1, · · · , g}
g ← Select(C, g, g/2)

return p

What is this algorithm doing? First it divides A into segments of size 5. Within each group,
it finds the median by first sorting the elements with MergeSort. Recall that MergeSort
sorts in O(n log n) time. However, since each group has a constant number of elements, it
takes constant time to sort. Then it makes a recursive call to Select to find the median
of C, the median of medians. Intuitively, by partitioning around this value, we are able to
find something that is close to the true median for partitioning, yet is ‘easier’ to compute,
because it is the median of g = dn/5e elements rather than n. The last part is as before:
once we have our pivot element p, we split the array and recurse on the proper subproblem,
or halt if we found our answer.

We have devised a slightly complicated method to determine which element to partition
around, but the algorithm remains correct for the same reasons as before. So what is its
running time? As before, we’re going to show this by examining the size of the recursive
subproblems. As it turns out, by taking the median of medians approach, we have a guarantee
on how much smaller the problem gets each iteration. The guarantee is good enough to
achieve O(n) runtime.

2.1 Running Time

Lemma. |A<| ≤ 7n/10 + 5 and |A>| ≤ 7n/10 + 5.

Proof. p is the median of p1, · · · , pg. Because p is the median of g = dn/5e elements, the
medians of dg/2e−1 groups pi are smaller than p. If p is larger than a group median, it is larger
than at least three elements in that group (the median and the smaller two numbers). This
applies to all groups except the remainder group, which might have fewer than 5 elements.
Accounting for the remainder group, p is greater than at least 3 · (dg/2e− 2) elements of A.
By symmetry, p is less than at least the same number of elements.

2



Now,

|A>| = # of elements greater than p

≤ (n − 1)− 3 · · · (dg/2e − 2)

= n + 5− 3 · · · dg/2e
≤ n − 3n/10 + 5

≤ 7n/10 + 5

By symmetry, |A<| ≤ 7n/10 + 5 as well.

Intuitively, we know that 60% of half of the groups are less than the pivot, which is 30% of
the total number of elements, n. Therefore, at most 70% of the elements are greater than
the pivot. Hence, |A>| ≈ 7n/10. We can make the same argument for |A<|.

The recursive call used to find the median of medians has input of size dn/5e ≤ n/5 + 1.
The other work in the algorithm takes linear time: constant time on each of dn/5e groups
for MergeSort (linear time total for that part), O(n) time scanning A to make A< and A>.

Thus, we can write the full recurrence for the runtime,

T (n) ≤

{
c1n + T (n/5 + 1) + T (7n/10 + 5) if n > 5

c2 if n ≤ 5

How do we prove that T (n) = O(n)? The master theorem does not apply here. Instead, we
will prove this using the substitution method.

2.2 Solving the Recurrence of Select Using the Substitution Method

For simplicity, we consider the recurrence T (n) ≤ T (n/5) + T (7n/10) + cninstead of the
exact recurrence of Select.

To prove that T (n) = O(n), we guess:

T (n) ≤

{
d · n0 if n = n0

d · n if n > n0

For the base case, we pick n0 = 1 and use the standard assumption that T (1) = 1 ≤ d . For
the inductive hypothesis, we assume that our guess is correct for any n < k , and we prove
our guess for k . That is, consider d such that for all n0 ≤ n < k, T (n) ≤ dn.

3



To prove for n = k , we solve the following equation:

T (k) ≤ T (k/5) + T (7k/10) + ck

≤ dk/5 + 7dk/10 + ck

=⇒ 9/10d + c ≤ dk
=⇒ c ≤ d/10

=⇒ d ≥ 10c

Therefore, we can choose d = max(1, 10c), which is a constant factor. The induction is
completed. By the definition of big-Oh, the recurrence runs in O(n) time.

2.3 Isssues When Using the Substitution Method

Now we will try out an example where our guess is incorrect. Consider the recurrence T (n) =

2T (n/2) + n (similar to MergeSort). We will guess that the algorithm is linear

T (n) ≤

{
d · n0 if n = n0

d · n if n > n0

We try the inductive step. We try to pick some d such that for all n ≥ n0,

n + Σki=1dg(ni) ≤ d · g(n)

n + 2 · d ·
n

2
≤ dn

n(1 + d) ≤ dn
n + dn ≤ dn

n < 0

However, the above can never be true, and there is no choice of d that works! Thus our
guess was incorrect.

This time the guess was incorrect since MergeSort takes superlinear time. Sometimes,
however, the guess can be asymptotically correct but the induction might not work out.
Consider for instance T (n) ≤ 2T (n/2) + 1.

We know that the runtime is O(n) so let’s try to prove it with the substitution method. Let’s
guess that T (n) ≤ cn for all n ≥ n0.

First we do the induction step: We assume that T (n/2) ≤ cn/2 and consider T (n). We
want that 2 · cn/2 + 1 ≤ cn, that is, cn + 1 ≤ cn. However, this is impossible.

This doesn’t mean that T (n) is not O(n), but in this case we chose the wrong linear function.
We could guess instead that T (n) ≤ cn−1. Now for the induction we get 2 ·(cn/2−1)+1 =

cn − 1 which is true for all c . We can then choose the base case T (1) = 1.

4



2.4 Correctness of the Algorithm

Recall that the choice of pivot only affects the runtime, and not the correctness of the
algorithm. Here, we prove formally, by induction, that Select is correct. We will use strong
induction. That is, our inductive step will assume that the inductive hypothesis holds for all
n between 1 and i − 1, and then we’ll show that it holds for n = i .

Remark. You can also do this using regular induction with a slightly more complicated
inductive hypothesis; either way is fine.

Inductive Hypothesis (for n). When run on an array A of size n and an integer k ∈
{1, · · · , n}, Select returns the k-th smallest element of A.

Base Case (n = 1). When n = 1, the requirement k ∈ {1, · · · , n} means that k = 1; that
is, Select(A, k) is supposed to return the smallest element of A. This is precisely what the
pseudocode above does when |A| = 1, so this establishes the Inductive Hypothesis for n = 1.

Inductive Step. Let i ≥ 2, and suppose that the inductive hypothesis holds for all n with
1 ≤ n < i . Our goal is to show that it holds for n = i . That is, we would like to show that

When run on an array A of size i and an integer k ∈ {1, · · · , i}, Select(A, k) returns the k-th
smallest element of A.

Informally, we want to show that assuming that Select “works” on smaller arrays, then it
“works” on an array of length n.

We do this below:

Suppose that 1 ≤ k ≤ i , and that A is an array of length i . There are three cases to consider,
depending on p = ChoosePivot(A, i). Notice that in the pseudocode above, p is a value
from A, not an index. Let A<, A>, p be as in the pseudocode above.

• Case 1. Suppose that |A<| = k − 1. Then by the definition of A<, there are k − 1

elements of A that are smaller than p, so p must be the k-th smallest. In this case, we
return p, which is indeed the k-th smallest.

• Case 2. Suppose that |A<| > k−1. Then there are more than k−1 elements of A that
are smaller than p, and so in particular the k-th smallest element of A is the same as
the k-th smallest element of L. Next we will use the inductive hypothesis for n = |A<|,
which holds since |A<| < i . Since 1 ≤ k ≤ |A<|, the inductive hypothesis implies that
Select(A<, k) returns the k-th smallest element of A<. Thus, by returning this we are
also returning the k-th smallest element of A, as desired.

• Case 3. Suppose that |A<|< k−1. Then there are fewer than k−1 elements that are less
than p, which means that the k-th smallest element of Amust be greater than p; that is,
it shows up in A>. Now, the k-th smallest element in A is the same as the (k−|A<|−1)-
st element in A>. To see this, notice that there are |A<| + 1 elements smaller than
the k-th that do not show up in A>. Thus there are k − (|A<| + 1) = k − |A<| − 1

elements in A> that are smaller than or equal to the k-th element. Now we want to

5



apply the inductive hypothesis for n = |A>|, which we can do since |A>| < i . Notice
that we have 1 ≤ k − |A<| − 1 ≤ |A>|; the first inequality holds because k > |A<|+ 1

by the definition of Case 3, and the second inequality holds because it is the same as
k ≤ |A<|+ |A>|+ 1 = n, which is true by assumption. Thus, the inductive hypothesis
implies that Select(A>, k − |A<| − 1) returns the (k − |A<| − 1)-st element of A>.
Thus, by returning this we are also returning the k-th smallest element of A, as desired.

Thus, in each of the three cases, Select(A, k) returns the k-th smallest element of A.
This establishes the inductive hypothesis for n = i .

Conclusion. By induction, the inductive hypothesis holds for all n ≥ 1. Thus, we conclude
that Select(A, k) returns the k-th smallest element of A on any array A, provided that
k ∈ {1, · · · , |A|}. That is, Select is correct, which is what we wanted to show.

6


	Introduction
	Choose a pivot ``close enough'' to the median
	Running Time
	Solving the Recurrence of Select Using the Substitution Method
	Isssues When Using the Substitution Method
	Correctness of the Algorithm


