
COMP 285 (NC A&T, Spr ‘22) Lecture 6

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Substitution Method & k-Select Problem

1 Introduction

In the last lecture, we covered the Master Theorem to solve recurrence relations. This
method works well in cases where the sub-problems are of equal size (which is most of the
time). In this lecture, we’ll cover a more advanced method for solving more complicated
recurrence relations.

This method is required to understand and proof the running time of the k-Select Problem,
which we will also introduce.

2 The Subtitution Method

Recurrence trees can get quite messy when attempting to solve complex recurrences. With
the substitution method, we can guess what the runtime is, plug it in to the recurrence and
see if it works out.

Given a recurrence T (n) ≤ f (n)+Σki=1T (ni), we can guess that the solution to the recurrence
is

T (n) ≤

{
d · g(n0) if n = n0

d · g(n) if n > n0

for some constants d > 0 and n0 ≥ 1 and a function g(n). We are essentially guessing that
T (n) ≤ O(g(n)).

For our base case we must show that you can pick some d such that T (n0) ≤ d · g(n0). For
example, this can follow from our standard assumption that T (1) = 1.

Next we assume that our guess is correct for everything smaller than n, meaning T (n′) ≤
d · g(n′) for all n′ < n. Using the inductive hypothesis, we prove the guess for n. We must
pick some d such that

f (n) +

k∑
i=1

d · g(ni) ≤ d · g(n), whenever n ≥ n0

1



Typically the way this works is that you first try to prove the inductive step starting from the
inductive hypothesis, and then from this obtain a condition that d needs to obey. Using this
condition you try to figure out the base case, i.e., what n0 should be.

3 Selection

The selection problem is to find the kth smallest number in an array A.

Input: array A of n numbers, and an integer k ∈ {1, ·, n}. Output: the k-th smallest number
in A.

One approach is to sort the numbers in ascending order, and then return the kth number in
the sorted list. This takes O(n log n) time, since it takes O(n log n) time for the sort (e.g. by
MergeSort) and O(1) time to return kth number.

3.1 Minimum Element

As always, we ask if we can do better (i.e. faster in big-O terms). In the special case where
k = 1, selection is the problem of finding the minimum element. We can do this in O(n)

time by scanning through the array and keeping track of the minimum element so far. If the
current element is smaller than the minimum so far, we update the minimum.

Algorithm 1: SelectMin(A)
m ←∞
n ← length(A)
for i = 1 to n do
if A[i ] < m then
m ← A[i ]

end if
end for

In fact, this is the best running time we could hope for.

Definition. A deterministic algorithm is one which, given a fixed input, always performs the
same operations (as opposed to an algorithm which uses randomness).

Claim. Any deterministic algorithm for finding the minimum has runtime Ω(n).

Proof. Intuitively, the claim holds because any algorithm for the minimum must look at
all the elements, each of which could be the minimum. Suppose a correct deterministic
algorithm does not look at A[i ] for some i . Then the output cannot depend on A[i ], so
the algorithm returns the same value whether A[i ] is the minimum element or the maximum
element. Therefore the algorithm is not always correct, which is a contradiction. So there is
no sublinear deterministic algorithm for finding the minimum.

2



So for k = 1, we have an algorithm which achieves the best running time possible. By similar
reasoning, this lower bound of Ω(n) applies to the general selection problem. So ideally we
would like to have a linear-time selection algorithm in the general case.

3.2 Linear-Time Selection

In fact, a linear-time selection algorithm does exist, and we will cover it in next lecture.

3


	Introduction
	The Subtitution Method
	Selection
	Minimum Element
	Linear-Time Selection


