
COMP 285 (NC A&T, Spr ‘22) Lecture 5

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Introduce to Recurrences and Master Theorem

1 Introduction to Recurrences

Recall that divide and conquer algorithms divide up a problem into a number of subproblems
that are the smaller instances of the same problem, solve those problems recursively, and
combine the solutions to the subproblems into a solution for the original problem. When a
subproblem size is small enough, the subproblem is solved in a straightforward manner. In
the past lectures we have seen two examples of divide and conquer algorithms: MergeSort
and Karatsuba’s algorithm for integer multiplication.

The running time of divide and conquer algorithms can be naturally expressed in terms of
the running time of smaller inputs. Today we will show two techniques for solving these
recurrences. The first is called the master method to solve these recurrences. This method
can only be used when the size of all the subproblems is the same (as was the case in the
examples).

2 Recurrences

Stated more technically, a divide and conquer algorithm takes an input of size n and does
some operations all running in O(f (n)) time for some f and runs itself recursively on k ≥ 1

instances of size n1, n2, . . . nk , where ni < n for all i . To talk about what the runtime of
such an algorithm is, we can write a runtime recurrence. Recurrences are functions defined
in terms of themselves with smaller arguments, as well as one or more base cases. We can
define a recurrence more formally as follows:

Let T (n) be the worst-case runtime on instances of size n. If we have k recursive calls on a
given step (of sizes ni) and each step takes time O(f (n)), then we can write the runtime as
T (n) ≤ c · f (n) +

∑k
i=1 T (ni) for some constant c , where our base case is T (c ′) ≤ O(1).

Now let’s try finding recurrences for some of the divide and conquer algorithms we have seen.

2.1 Integer Multiplcation

Recall the integer multiplication problem, where we are given two n-digit integers x and y and
output the product of the two numbers. The long multiplication/grade school algorithm runs

1

in O(n2) time. In lecture 1 we saw two divide and conquer algorithms for solving this problem.
In both of them, we divided each of x and y into two (n/2)-digit numbers in the following
way: x = 10

n
2a+b and y = 10

n
2 c+d . Then we compute xy = ac ·10n + 10

n
2 (ad +bc) +bd .

In the first algorithm, which we call Mult1, we simply computed the four products ac, ad, bc, bd .
Karatsuba found that since we only need the sum of ad and bc , we can save one multiplication
operation by noting that ad + bc = (a + b)(c + d)− ac − bd .

Algorithm 1: Mult1(x,y)

Split x and y into x = 10
n
2a + b and y = 10

n
2 c + d

z1 = Mult1(a, c)

z2 = Mult1(a, d)

z3 = Mult1(b, c)

z4 = Mult1(b, d)

return z1 · 10n + 10
n
2 (z2 + z3) + z4

Algorithm 2: Karatsuba(x,y)
Split x and y into x = 10

n
2a + b and y = 10

n
2 c + d

z1 = Karatsuba(a, c)

z2 = Karatsuba(a, d)

z3 = Karatsuba(a + c, c + d)

z4 = z3 − z1 − z2
return z1 · 10n + z4 · 10

n
2 + z2

We now express the running time of these two algorithms using recurrences. Adding two n
digit integers is an O(n) operation, since for each position we add at most three digits: the
ith digit from each number and possibly a carry from the additions due to the (i−1)th digits.

Let T1(n) and T2(n) denote the worst-case runtime of Mult1 and Karatsuba, respectively, on
inputs of size n. Then, the runtime of Mult1 can be written as the recurrence

T1(n) = 4T1

(n
2

)
+O(n)

and Karatsuba’s runtime can be written as the recurrence

T2(n) = 3T2

(n
2

)
+O(n)

Note that the constant “hidden” in the O(n) term in T2 may be greater than in T1, but for
asymptotic analysis of the running time, these constants are not important.

2.2 MergeSort

Consider the basic steps for algorithm MergeSort(A), where |A| = n.

2

1. If |A| = 1, return A.

2. Split A into A1, A2 of size n
2
.

3. Run MergeSort(A) and MergeSort(A2).

4. Merge(A1, A2)

Steps 2 and 4 each take time O(n). In step 3, we are splitting the work up into two
subproblems of size n

2
. Therefore, we get the following recurrence:

T (n) = 2T
(n

2

)
+O(n)

In the previous lecture, we saw that the running time of MergeSort is O(n log n). In this
lecture we will show how to derive this using the master method.

3 The Master Method

We now introduce a general method, called the master method, for solving recurrences where
all the subproblems are of the same size. We assume that the input to the master method is
a recurrence of the form

T (n) = a · T
(n
b

)
+O(nd)

In this recurrence, there are three constants:

• a is the number of subproblems that we create from one problem, and must be an
integer greater than or equal to 1.

• b is the factor by which the input size shrinks (it must hold that b > 1).

• d is the exponent of n in the time it takes to generate the subproblems and combine
their solutions.

There is another constant “hidden” in the big-O notation. We will introduce it in the proof
and see that it does not affect the result.

In addition, we need to specify the “base case” of the recurrence, that is, the runtime when
the input gets small enough. For a sufficiently small n (say, when n = 1), the worst-case
runtime of the algorithm is constant, namely, T (n) = O(1).

We now state the master theorem, which is used to solve the recurrences.

Theorem 1 (Master Theorem). Let T (n) = a ·T
(
n
b

)
+O(nd) be a recurrence where a, b > 1,

Then,

3

T (n) =

O(nd log n) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

Remark 1. In some cases, the recurrence may involve subproblems of size dn
b
e, bn

b
c or nb+ 1.

The master theorem holds for these cases as well. However, we do not prove that here.

Before we turn to the proof of the master theorem, we show how it can be used to solve the
recurrences we saw earlier.

• Mult1: T (n) = 4T (n
2

) + O(n). The parameters are a = 4, b = 2, d = 1, so a > bd ,
hence T (n) = O(nlog2(4)) = O(n2).

• Karatsuba: T (n) = 3T (n
2

) +O(n). The parameters are a = 3, b = 2, d = 1, so a > bd ,
hence T (n) = O(nlog2(3)) = O(n1.59).

• MergeSort: T (n) = 2T (n
2

)+O(n). The parameters are a = 2, b = 2, d = 1, so a = bd ,
hence T (n) = O(n logn).

• Another example: T (n) = 2T (n
2

) +O(n2). The parameters are a = 2, b = 2, d = 2, so
a < bd , hence T (n) = O(n2).

We see that for integer multiplication, Karatsuba is the clear winner!

Proof of the Master Theorem Let T (n) = a ·T (n
b

) +O(nd) be the recurrence we solve using
the master theorem. For simplicity, we assume that T (1) = 1 and that n is a power of b.
From the definition of big-O, we know that there is a constant c > 0 such that for sufficiently
large n, T (n) ≤ a ·T (n

b
) + c ·nd . The proof of the master theorem will use the recursion tree

in a similar way to our analysis of the running time of MergeSort.

The recursion tree drawn above has logbn + 1 level. We analyze the amount of work done
at each level, and then sum over all levels in order to get the total running time. Consider
level j . At level j , there are aj subproblems. Each of these subproblems is of size n

bj
, and

will take time at most c
(
n
bj

)d
to solve (this only considers the work done at level j and does

not include the time it takes to solve the subsubproblems). We conclude that the total work
done at level j is at most aj · c

(
n
bj

)d
= cnd

(
a
bd

)j
.

Writing the running time this way shows us where the terms a and bd come from: a is the
branching factor and measures how the number of subproblems grows at each level, and bd

is the shrinkage in the work needed (per subproblem).

Summing over all levels, we get that the total running time is at most cndΣlogb nj=0

(
a
bd

)j
. We

now consider each of the three cases.

1. a = bd . In this case, the amount of work done at each level is the same: cnd .
Since there are logb n + 1 levels, the total running time is at most (logb n + 1)cnd =

O(nd logn).

4

2. a < bd . In this case, a
bd
< 1, hence, Σlogb nj=0

(
a
bd

)j ≤ Σ∞j = 0
(
a
bd

)j
= 1
1− a

bd
= bd

bd−a .

Hence, the total running time is cnd · bd

bd−a = O(nd).

Intuitively, in this case the shrinkage in the work needed per subproblem is more signifi-
cant, so the work done in the highest level “dominates” the other factors in the running
time.

3. a > bd . In this case, Σlogb nj=0

(
a
bd

)j
=

(a

bd
)
logb n+1−1
a

bd
−1 . Since a, b, c, d are constants, we

get that the total work done is O
(
nd · (a

bd
)logb n

)
= O

(
nd · alogb n

bd logb n

)
= O

(
nd · nlogb a

nd

)
=

O
(
nlogb a

)
.

Intuitively, here the branching factor is more significant, so the total work done at each
level increases, and the leaves of the tree “dominate”.

We conclude with a more general version of the master theorem.

Theorem 2 (Master Theorem - more general version). Let T (n) = a · T (n
n

) + f (n) be a
recurrence where a ≥ 1, b > 1. Then,

• If f (n) = O(nlogn(a)−ε) for some constant ε > 0, T (n) = Θ(nlogb(a)).

• If f (n) = Θ(nlogb(a)), T (n) = Θ(nlogb(a) log n).

• If f (n) = Ω(nlogn(a)+ε) for some constant ε > 0 and if af (n/b) ≤ cf (n) for some c < 1

and all sufficiently large n, then T (n) = Θ(f (n)).

5

	Introduction to Recurrences
	Recurrences
	Integer Multiplcation
	MergeSort

	The Master Method

