
COMP 285 (NC A&T, Spr ‘22) Lecture 4

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

MergeSort and Introduction to Recurrence Relations

1 MergeSort Cont.

From last lecture, we will continue our implementation of MergeSort, and go over some of
the details regarding correctness and running time.

1.1 Correctness of MergeSort

Let’s focus on the first question first. As before, we’ll proceed by induction. This time, we’ll
maintain a recursion invariant that any time MergeSort returns, it returns a sorted array.

• Inductive Hypothesis. Whenever MergeSort returns an array of size ≤ i , that array
is sorted.

• Base case. Suppose that i = 1. Then whenever MergeSort returns an array of length
0 or length 1, that array is sorted. (Since all array of length 0 and 1 are sorted). So
the Inductive Hypothesis holds for i = 1.

• Inductive step. We need to show that if MergeSort always returns a sorted array on
inputs of length leqi − 1, then it always does for length ≤ i . Suppose that MergeSort
has an input of length i . Then L and R are both of length ≤ i − 1, so by induction, L
and R are both sorted. Thus, the inductive step boils down to the statement:

“When Merge takes as inputs two sorted arrays L and R, then it returns a sorted array
containing all of the elements of L, along with all of the elements of R.”

This statement is intuitively true, although proving it rigorously takes a bit of book-
keeping. In fact, it takes another proof by induction! Check out CLRS Section 2.3.1
for a rigorous treatment.

• Conclusion. By induction, the Inductive hypothesis holds for all i . In particular, given
an array of any length n, MergeSort returns a sorted version of that array.

1.2 Running time of MergeSort

Finally, we get to our first question in this lecture where the answer may not be intuitively
obvious. What is the running time of MergeSort? In the next few lectures, we’ll see a few

1

principled ways of analyzing the runtime of a recursive algorithm. Here, we’ll just go through
one of the ways, which is called the recursion tree method.

The idea is to draw a tree representing the computation (see the slides for the visuals). Each
node in the tree represents a subproblem, and its children represent the subproblems we need
to solve to solve the big sub-problem. The recursion tree for MergeSort looks something like
this:

At the top (zeroth) level is the whole problem, which has size n. This gets broken into two
sub-problems, each of size n/2, and so on. At the t’th level, there are 2t problems, each of
size n/2t . This continues until we have n problems of size 1, which happens at the log(n)’th
level.

Some notes:

• In this class, logarithms will always be base 2, unless otherwise noted.

• We are being a bit sloppy in the picture above: what if n is not a power of 2? Then
n/2j might not be an integer. In the pseudocode above, we actually break a problem
of size n into problems of size bn/2c and dn/2e. Keeping track of this in our analysis
will be messy, and it won’t add much, so we will ignore it, and for now we will assume
that n is a power of 2 1

1To formally justify the assumption that n is a power of 2, notice that we can always sort a longer list of

2

In order to figure out the total amount of work, we will figure out how much work is done
at each node in the tree, and add it all up. To that end, we tally up the work that is done
in a particular node in the tree—that is, in a particular call to MergeSort. There are three
things:

1. Checking the base case

2. Making recursive calls (but we don’t count the work actually done in those recursive
calls; that will count in other nodes)

3. Running Merge.

Let’s analyze each of these. Suppose that our input has size m (so that m = n/2j for some
j).

1. Checking the base case doesn’t take much time. For concreteness, let us say that it
takes one operation to retrieve the length of A, and other operation to compare this
length to 1, for a total of two operations.2

2. Making the recursive calls should also be fast. If we implemented the pseudocode well,
it should also take a constant number of operations.

Aside: This is a good point to talk about how we interpret pseudocode in this class.
Above, we’ve written MergeSort(A[:n/2]) as an example of a recursive call. This
makes it clear that we are supposed to recurse on the first half of the list, but it’s
not clear how we actually implement that. Our “pseudocode” above is in fact working
Python code, and in Python, this implementation, while clear, is a bit inefficient. That
is, written this way, Python will actually copy the first n/2 elements of the list before
sending them to the recursive call. A much better way would be to instead just pass
in pointers to the 0’th and n/2 − 1’st index in the list. This would result in a faster
algorithm, but kludgier pseudocode. In this class, we generally will opt for cleaner
pseudocode, as long as it does not hurt the asymptotic running time of the algorithm.
In this case, our simple-but-slower pseudocode turns out not to affect the asymptotic
running time, so we’ll stick with this.

In light of the above Aside, let’s suppose that this step takes m+2 operations, m/2 to
copy each half of the list over, and 2 operations to store the results. Of course, a better
implementation of this step would only take a constant number (say, four) operations.

3. The third thing is the tricky part. We claim that the Merge step also takes about m
operations.

length n′ = 2dlog2(n)e. That is, we’ll add extra entries, whose values are ∞, to the list. Then we sort the new
list of length n′, and return the first n values. Since n′ ≤ 2n (why?) this won’t affect the asymptotic running
time. Also see CLRS Section 4.6.2 for a rigorous analysis of the original algorithm with floors and ceilings.

2Of course, there’s no reason that the “operation” of getting the length of A should take the same amount
of time as the “operation” of comparing two integers. This disconnect is one of the reasons we use big-Oh
notation.

3

Consider a single call to Merge, where we’ll assume the total size of A is m numbers.
How long will it take for Merge to execute? To start, there are two initializations for
i and j . Then, we enter a for loop which will execute m times. Each loop will require
one comparison, followed by an assignment to S and an increment of i or j . Finally,
we’ll need to increment the counter in the for loop k . If we assume that each operation
costs us a certain amount of time, say Costa for assignment, Costc for comparison,
Costi for incrementing a counter, then we can express the total time of the Merge
subroutine as follows:

2Costa +m(Costa + Costc + 2Costi)

This is a precise, but somewhat unruly expression for the running time. In particular,
it seems difficult to keep track of lots of different constants, and it isn’t clear which
costs will be more or less expensive (especially if we switch programming languages or
machine architectures). To simplify our analysis, we choose to assume that there is
some global constant cop which represents the cost of an operation. You may think
of cop as max{Costa, Costc , Costi , . . . }. We can then bound the amount of running
time for Merge as

2cop + 4copm = 2 + 4m operations

Thus, the total number of operations is at most

2 + (m + 2) + 4m + 2 ≤ 11m

using the assumption that m ≥ 1. This is a very loose bound; for larger m this will be much
closer to 5m than it is to 11m. But, as we’ll discuss more below, the difference between 5
and 11 won’t matter too much to us, so much as the linear dependence on m.

Now that we understand how much work is going on in one call where the input has size m,
let’s add it all up to obtain a bound on the number of operations required for MergeSort. In
a Merge of m numbers, we want to translate this into a bound on the number of operations
required for MergeSort. At first glance, the pessimist in you may be concerned that at
each level of recursive calls, we’re spawning an exponentially increasing number of copies of
MergeSort (because the number of calls at each depth doubles). Dual to this, the optimist in
you will notice that at each level, the inputs to the problems are decreasing at an exponential
rate (because the input size halves with each recursive call). Today, the optimists win out.

Claim 3. MergeSort requires at most 11n log n + 11n operations to sort n numbers.

Before we go about proving this bound, let’s first consider whether this running time bound is
good. We covered in last lecture that more obvious methods of sorting, like InsertionSort,
required roughly n2 operations. How does n2 = n · n compare to n · log n? An intuitive
definition of log n is the following: “Enter n into your calculator. Divide by 2 until the total
is ≤ 1. The number of times you divided is the logarithm of n.” This number in general will
be significantly smaller than n. In particular, if n = 32, then log n = 5; if n = 1024, then

4

log n = 10. Already, to sort arrays of ≈ 103 numbers, the savings of n log n as compared to
n2 will be orders of magnitude. At larger problem instances of 106, 109, etc. the difference
will become even more pronounced! n log n is much closer to growing linearly (with n) than
it is to growing quadratically (with n2).

One way to argue about the running time of recursive algorithms is to use recurrence relations.
A recurrence relation for a running time expresses the time it takes to solve an input of size
n in terms of the time required to solve the recursive calls the algorithm makes. In particular,
we can write the running time T (n) for MergeSort on an array of n numbers as the following
expression.

T (n) = T (n/2) + T (n/2) + T (Merge(n))

≤ 2 · T (n/2) + 11n

There are a number of sophisticated and powerful techniques for solving recurrences. We will
cover many of these techniques in the coming lectures. Today, we can actually analyze the
running time directly.

Proof of Claim 3 Consider the recursion tree of a call to MergeSort on an array of n numbers.
Assume for simplicity that n is a power of 2. Let’s refer to the initial call as Level 0, the
proceeding recursive calls as Level 1, and so on, numbering the level of recursion by its depth
in the tree. How deep is the tree? At each level, the size of the inputs is divided in half, and
there are no recursive calls when the input size is ≤ 1 element. By our earlier “definition”,
this means the bottom level will be Level log n. Thus, there will be a total of log n+1 levels.

We can now ask two questions: (1) How many subproblems are there at Level i? (2) How
large are the individual subproblems at Level i? We can observe that at the ith level, there
will be 2i subproblems, each with inputs of size n/2i .

We’ve already worked out that each sub-problem with input of size n/2i takes at most 11n/2i

operations. Now we can add this up:

Work at Level i = (number of subproblems) · (work per subproblem)

≤ 2i · 11
(n
2i

)
= 11n operations.

Importantly, we can see that the work done at Level i is independent of i − i . It only depends
on n and is the same for every level. This means we can bound the total running time as
follows:

5

Total number of operations = (operations per level) · (number of levels)

≤ (11n) · (log n + 1)
= 11n log n + 11n

This proves the claim, and we’re done!

2 Introduction to Recurrences

Recall that divide and conquer algorithms divide up a problem into a number of subproblems
that are the smaller instances of the same problem, solve those problems recursively, and
combine the solutions to the subproblems into a solution for the original problem. When a
subproblem size is small enough, the subproblem is solved in a straightforward manner. In
the past lectures we have seen two examples of divide and conquer algorithms: MergeSort
and Karatsuba’s algorithm for integer multiplication.

The running time of divide and conquer algorithms can be naturally expressed in terms of
the running time of smaller inputs. Today we will show two techniques for solving these
recurrences. The first is called the master method to solve these recurrences. This method
can only be used when the size of all the subproblems is the same (as was the case in the
examples).

3 Recurrences

Stated more technically, a divide and conquer algorithm takes an input of size n and does
some operations all running in O(f (n)) time for some f and runs itself recursively on k ≥ 1
instances of size n1, n2, . . . nk , where ni < n for all i . To talk about what the runtime of
such an algorithm is, we can write a runtime recurrence. Recurrences are functions defined
in terms of themselves with smaller arguments, as well as one or more base cases. We can
define a recurrence more formally as follows:

Let T (n) be the worst-case runtime on instances of size n. If we have k recursive calls on a
given step (of sizes ni) and each step takes time O(f (n)), then we can write the runtime as
T (n) ≤ c · f (n) +

∑k
i=1 T (ni) for some constant c , where our base case is T (c ′) ≤ O(1).

Next lecture, we’ll try to find the recurrence of some of the divide-and-conquer algorithms
we’ve seen so far!

6

	MergeSort Cont.
	Correctness of MergeSort
	Running time of MergeSort

	Introduction to Recurrences
	Recurrences

