
Adapted From Virginia Williams’lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 34

Max Flows and Mininum Cuts II

1 Ford-Fulkerson

From this, we can construct an algorithm to find the maximum flow. Starting with some
arbitrary flow of the graph, construct the residual network, and check if there is a path from
s to t. If there is a path, update the flow, construct the new residual graph and repeat.
Otherwise, we have found the max flow.

A path from s to t in the residual graph is called an augmenting path, and pushing flow
through it to modify the current flow is referred to as augmenting along the path.

The run time of this algorithm is bounded by the number of times we update our flow. If the
edge capacities are all integers, we can increase the flow by at least 1 each time we update
our flow. Therefore, the runtime is O(|f |m) where |f | is the value of the max flow. If we have
rational edge capacities, then we can multiply all edge capacities by a factor to make them
all integers. However, the runtime blows up by that factor as well. If we have irrational edge
capacities, then the algorithm is no longer guaranteed to terminate. So we have a problem.

Algorithm 1: maxflow(G, s, t)
f ← all zeros flow
Gf ← G
while t is reachable from s in Gf (check using DFS/BFS) do
P ← path in Gf from s to t
F ← min capacity on P
f ← f ′ as defined in Lemma 5 above.
Update Gf to the corresponding new flow.

return f

We will save the day in the next sections. Algorithm 1 is called the Ford-Fulkerson method.

It is actually part of a family of algorithms that depend on how the path P between s and t in
Gf is selected. One can obtain P via DFS, BFS, or any other method for selecting paths. It
turns out that two methods work particularly well: the shortest path method and the fattest
path method. The shortest path method is known as the Edmonds-Karp algorithm or Dinic’s
algorithm.

The fattest path method. This method finds a path between s and t that maximizes
mine∈P cf (e) among all s − t paths P . Finding such a path can be done in O(m+ n) time by
a clever mix of linear time median-finding and DFS.

1

The shortest path method (the Edmonds-Karp algorithm/Dinic’s algorithm). This
method picks the path between s and t using BFS, thus picking a path that minimizes
the number of edges. Finding such a path also runs in O(m) time: BFS takes O(m + n) to
explore the whole graph, but since we only care about the vertices reachable from s this is
O(m) time.

Since both methods of selecting a path run in linear time, the main question becomes, how
many iterations does Ford-Fulkerson perform? We will answer these questions below in the
next section.

2 Running time of various implementations of Ford-Fulkerson

Remark 1. We did not discuss the details of this section in class, but it’s in the notes for the
interested reader.

2.1 The fattest path version for Ford-Fulkerson

In this section we will show that the fattest path method results in a runtime of O(m(m +
n)log|f |) when run on a graph with integer capacities. Thus, when rational capacities are
converted to integers by multiplying by N, we get a runtime of O(m(m+ n)(log|f |+ logN))
for rational capacities. Thus the effect of large N is mitigated. This method does not solve
the issues when the capacities can be irrational.

To show the runtime, we prove a main claim that states that after each iteration of the
algorithm, the maximum flow value in Gf goes down by a factor of (1−1/m). This max flow
value starts as |f | since Gf = G in the beginning of the algorithm, and ends at 0 as in the
end s and t are disconnected.

Proposition 1. Let f ′ be the max flow in Gf . Then after one iteration of Ford-Fulkerson on
Gf , the max flow value becomes ≤ |f ′|(1− 1/m).

Proof. Let P be the fattest path from s to t in Gf . Let F = mine∈P cf (e). Let S be the
nodes reachable from s in Gf via paths composed of edges with residual capacities > F .

Thus, any edge (x, y) of Gf with x ∈ tS, y /∈ S must have cf (x, y) ≤ F . In particular, this
means that the size of the cut between S and V \ S is

∑
x∈S,y

∫
V \S cf (x, y) ≤ mF . Thus,

the size of the min s-t cut in Gf is at most mF .

By the max-flow-min-cut theorem from last lecture, the size of the min s-t cut is at least the
size of the max-flow |f ′| in Gf , and so |f ′| ≤ mF . Thus F ≥ |f ′|/m. Now, when we augment
(push flow) along P , the flow in G increases by F , while the flow in Gf decreases by F .
Thus, the new flow in Gf after augmenting along P becomes |f ′| − F ≤ |f ′|(1− 1/m).

Now that the main claim has been proven, we can conclude with a discussion of the runtime.

2

Consider how the max flow value in Gf evolves after t iterations. It starts as |f | (where f is
the max flow in G) and then after t iterations is

≤ |f |(1− 1/m)t

.

If t = m ln |f |, we get that the max flow value in Gf is

≤ |f |((1− 1/m)m)ln |f | < |f |(1/e)ln |f | = 1.

Since all the capacities are integers, all the residual capacities are also integers, and so the
max flow value in Gf is an integer. Since it is < 1, it must be 0. Hence after mln|f | iterations,
the max flow value in Gf is zero, s and t are disconnected and the computed flow in G is
maximum. The runtime is O((m + n)mlog|f |).

2.2 The shortest path version of Ford-Fulkerson

Here we analyze running Ford-Fulkerson using BFS to find a path between s and t in Gf .

With each augmentation along a path P in Gf , at least one edge is removed from Gf ,
namely the edge with residual capacity F = mine∈P cf (e). The main claim that we need to
prove the runtime is that the number of times an edge can be removed from Gf is small.
Since each iteration of the algorithm causes at least one removal, the main proposition will
show that the number of iterations is small and hence the runtime is small as well.

Proposition 2. Fix any (u, v) that is ever an edge in Gf . Then the number of times that
(u, v) can disappear from Gf is at most n/2.

Once this proposition is proven, we would get that the total number of edge disappearances is
at most mn/2 and hence the number of iterations of the algorithm is also ≤ mn/2. Because
of this, the algorithm’s runtime is O((m + n)mn). To prove the proposition, we will need a
useful lemma (see below) that shows that as Gf evolves through the iterations, for any v ,
the (unweighted) distance from s to v in Gf cannot go down.

Let’s begin with some notation. LetG if be the residual network after the i-th iteration of the
algorithm; G0f = G. For a vertex v , let di(v) be the (unweighted) distance from s to v in
G if .

Lemma 1. For all i ≥ 1, and all v ∈ V, di−1(v) ≤ di(v).

Proof. Fix i . We will prove the statement for i by induction on d = di(v).

The inductive hypothesis is that for all d and all v with di(v) = d, di−1(v) ≤ di(v). The base
case is d = 0. We note that if di(v) = 0, then v = s since we view G if as an unweighted
graph. But then we also have di−1(s) = 0 ≤ di(s).

For the induction, let’s assume that the inductive hypothesis holds for d − 1, i.e. that for all
x with di(x) = d − 1, di−1(x) ≤ di(x). We want to show that for all v with di(v) = d , we
also have di−1(v) ≤ di(v).

3

Consider some v with di(v) = d . Let u be the node just before v on a shortest s − v path
in G if . Then, di(u) = di(v) − 1 = d − 1 and the inductive hypothesis applies to it so that
di−1(u) ≤ di(u). We consider two cases.

Case 1. (u, v) ∈ G i−1f . Then, by the triangle inequality in G i−1f , we have that di−1(v) ≤
di−1(u) + 1. Since di−1(u) ≤ di(u), we get that

di−1(v) ≤ di(u) + 1 = (di(v)− 1) + 1 = di(v)

.

Case 2. (u, v) /∈ G i−1f . Then, since (u, v) ∈ G if , we must have that (v , u) was on the
(i − 1)-st augmenting path. Hence di−1(u) = di−1(v) + 1. Hence:

di−1(v) = di−1(u)− 1 ≤ di(u)− 1 = di(v)− 2 ≤ di(v).

In both cases di−1(v) ≤ di(v) and the induction is complete.

Now we are ready to prove the main proposition.

Fix some (u, v) that is an edge in Gf at some point. Let’s consider two consecutive disap-
pearances of (u, v). Suppose that (u, v) ∈ Gi but (u, v) /∈ Gi+1.

If after this disappearance (u, v) had another one later on, then at some point (u, v) must
have appeared in Gf again. Let j be the first iteration after i so that the jth augmenting
path made (u, v) appear in G j+1f . Because (u, v) ∈ G if but (u, v) /∈ G i+1f , (u, v) must have
been in the i-th augmenting path Pi . Because (u, v) /∈ G jf but (u, v) ∈ G

j+1
f , (v , u) must

have been in the j-th augmenting path Pj .

From this we obtain that di(v) = di(u) + 1 and dj(u) = dj(v) + 1. Using the fact that j > i
and the key lemma from above we obtain

dj(u) = dj(v) + 1 ≥ di(v) + 1 = di(u) + 2

.

Thus, between (u, v)’s disappearance and its next reappearance, the distance from s to u
increased by +2. Hence between any two consecutive disappearances the distance to u
increases by ≥ 2. The distance starts as ≥ 0 and can be ≤ n − 1 before becoming ∞. Thus
the total number of disappearances of (u, v)is ≤ n/2.

This completes the proof of the main claim and the proof of the runtime.

3 Applications

We wrap up by talking about some applications of the Ford-Fulkerson algorithm.

4

3.1 Bipartite Perfect Matching

Let G = (V, E) be an undirected, unweighted bipartite graph: the set of vertices is partitioned
into V1 and V2 so that there are no edges with two endpoints entirely in V1 or entirely in V2.
A matching in G is a collection of edges, no two of which share an end point. A perfect
matching is a matching M such that every node in V has exactly one incident edge in M.
In order for G to have a perfect matching, we need that |V1| = |V2|. The perfect matching
problem is, given a bipartite graph G with |V1| = |V2| = n and on m edges, determine whether
G has a perfect matching.

We will solve the bipartite perfect matching problem by creating an instance of max flow and
using Ford-Fulkerson’s algorithm. Given G = (V1 ∪ V2, E), direct all the edges in E from V1
to V2. Add two extra nodes s and t. Add (directed) edges from s to every node in V1 and
from every node of V2 to t. In this new graph H, let all the edge capacities be 1 and then
run the Ford-Fulkerson algorithm to compute the max flow.

Suppose that G has a perfect matching M. Then, H has max flow value n = |V1| = |V2|.
This is because we can set f (e) = 1 for every e ∈ M, ell the edges out of s and all the edges
out of t. All other flow values are 0. The capacity constraints are trivially satisfied. The flow
conservation constraints are satisfied since for every x ∈ V1 there is exactly one edge (s, x)
into x that has flow 1, and exactly one edge (x, y) ∈ M with flow 1; similarly for every x ∈ V2
there is exactly one edge (x, t) out of x that has flow 1, and exactly one edge (y , x) ∈ M
with flow 1.

Suppose now that Ford-Fulkerson returns a flow f of value n. Hence f (s, x) = f (y , t) = 1
for all x ∈ V1, y ∈ V2. Because Ford-Fulkerson causes all flow values on the edges to be
integers, the flow values on all edges are either 1 or 0. Because of this, every node x ∈ V1
gets flow of 1 going into it and a flow of 1 needs to come out so that there is a single edge
(x, y) that has flow value 1 and all other edges out of x have flow value 0. Similarly, for
every y ∈ V2 there is a unique edge into y with positive flow value 1. The edges in V1 ∪ V2
with positive flow through them must hence form a perfect matching.

3.2 More applications

There are many applications of max-flow and min-cut! We may talk about a few more in
class if time (check the slides).

5

	Ford-Fulkerson
	Running time of various implementations of Ford-Fulkerson
	The fattest path version for Ford-Fulkerson
	The shortest path version of Ford-Fulkerson

	Applications
	Bipartite Perfect Matching
	More applications

