
Adapted From Virginia Williams’lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 33

Max Flows and Mininum Cuts

1 Formulation of the Maximum Flow Problem

You are given an input graph G = (V, E), where the edges are directed. There is a function
c : E → R ≥ 0 that defines the capacity of each edge. We also label two nodes in G, s
and t, as the source and destination, respectively. The task is to output a flow of maximum
value. We will shortly define what a flow is and what a flow of maximum value means.

A flow f is a function f : E → R ≥ 0 such that

1. Capacity constraints are satisfied:

∀(u, v) ∈ E : 0 ≤ f (u, v) ≤ c(u, v)

.

2. Flow conservation constraints are satisfied:

∀v ∈ V \ {s, t} :
∑

x∈Nin(v)

f (x, v) =
∑

y inNout(v)

f (v , y)

Here Nin(v) denotes the set of nodes with an edge that points to v and Nout(v) denotes
the set of nodes that v points to.

Figure 1: (Left) Graph G with edge capacities (Right) Graph G with a sample flow.

Suppose that there are no edges going into s and no edges coming out of t. From the
above, you can verify yourself that

∑
x∈Nout(s)

f (s, x) =
∑
y∈Nin(t)

f (y , t). We define the value

1

x ∈ Nout(s)f (s, x) to be the value of the flow f . We usually denote the value of a flow f as
|f |. If there are edges going into s and out of t, then the value of f is

|f | =
∑

x∈Nout(s)

f (s, x)−
∑
y∈Nin(s)

f (y , s)

.

The max flow problem is to find some flow f such that |f | is maximized. Remark 1. In the
analysis below we consider graphs with a single source s and a single sink t. However, if we
need to work with a graph with multiple sources, we can do so by adding a new source node,
and then adding edges with capacity infinity from it to each of the multiple sources. Similarly,
if we want to have multiple sinks, we add a new sink node and add edges from the multiple
sinks to that sink with capacity infinity.

2 Example

In Fig. 1, we have a graph G and a sample flow f . Observe that the two constraints for a
flow are satisfied. There can be multiple other flows possible that can satisfy the constraints.
For our given flow, |f | = 16. The max flow for this graph is actually 18, as we will see shortly.

3 Formulation of the Minimum Cut Problem

Now, we give a formulation of the min cut problem defined for directed graphs with source
and destination nodes s and t. Note that there is also a version of the min cut problem
without a source and sink node, though we won’t discuss that now. An s-t cut is a partition
V = S ∪ T where S and T are disjoint and s ∈ S, t ∈ T , and the size/cost of an s-t cut is
c(S, T) :=

∑
x∈S,y∈T c(x, y).

For our graph G shown above, if we setS = {s, a, c} and T = {b, t}, then the cost of the cut is
c(a, b)+c(c, b)+c(c, t) = 5+3+10 = 18. If we take another cut S′ = {s, c}, T ′ = {a, b, t},
then c(S′, T ′) = c(s, a)+c(c, b)+c(c, t) = 10+3+10 = 23. Note that we do not consider
the edge {a, c} as it is in the wrong direction (we only consider edges from S′ to T ′).

4 The Max-Flow Min-Cut Theorem

Lemma 1. For any flow f and any s-t cut (S, T) of G, we have |f | ≤ c(S, T). In particular,the
value of the max flow is at most the value of the min cut.

2

Proof.

|f | =
∑

x∈Nout(s)

f (s, x)−
∑
y∈Nin(s)

f (y , s)

=
∑
v∈S

 ∑
x∈Nout(v)

f (v , x)−
∑

y∈Nin(v)

f (y , v)

 (by flow conservation constraing for v 6= s)

=
∑
v∈S

 ∑
x∈Nout(v)∩S

f (v , x)−
∑

y∈Nin(v)∩S

f (y , v)

+∑
v∈S

 ∑
x∈Nout∩T (v)

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)


=
∑
v∈S

 ∑
x∈Nout∩T (v)

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)

 (first term sums to 0)

≤
∑

v∈S,x∈T,x∈Nout(v)

f (v , x)

=≤
∑

v∈S,x∈T,x∈Nout(v)

c(v , x)

= c(S, T)

In the proof,
∑
v∈S

(∑
x∈Nout(v)

f (v , x)−
∑
y∈Nint(v)

f (y , v)
)
= 0 since we add and subtract

the flow f (u, v) for every u, v ∈ S such that (u, v) ∈ E.

We get the following consequence.

Corollary 2. If we can find f and (S, T) such that |f | = c(S, T) then f is a max-flow and
(S, T) is a min s-t cut.

It turns out we can always find such an f and (S, T) for any graph.

Theorem 3. Max-Flow Min-cut Theorem For any graph G, source s and destination t, the
value of the max flow is equal to the cost of the min cut

We will show this by coming up with an algorithm. The algorithm will take the graph G and
some flow f that has already been constructed, and create a new graph that is called the
residual graph. In this new graph, the algorithm will try to find a path from s to t. If no
such path exists, we will show that the value of the flow we started with is the value of the
maximum flow. If not, we show how to increase the value of our flow by pushing some flow
on that path.

5 The Ford-Fulkerson Max-Flow Algorithm

We will make an assumption on our graph. The assumption can be removed, but it will make
our lives easier. We will assume that for all u, v ∈ V , G does not have both edges (u, v) and

3

Figure 2: The Residue network given the flow presented in Figure 1

(v , u) in E. We can make this condition hold by modifying the original graph in the following
way. If (u, v), (v , u) ∈ E, we split the edge (u, v) to two edges (u, x) and (x, v), where x is
a new node we introduce into the graph. This makes the number of nodes at most m + n.

Now, let f be a flow given to us. We will try to see if we can improve this flow. We will
define the residual capacity cf : V × V → R≥0 as follows.

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise.

Basically, what this does is that, if there is any flow through the edge, you remove the flow
from the capacity and add an edge in the opposite direction with the value of the flow. The
reason we do this is because the flow we picked thus far might not be the correct flow, and
this formulation allows us to undo changes that we have done through “adding flow” in the
revere direction. The residual capacity cf (u, v) represents how much flow we can send from
u to v in addition to the flow f .

We define Gf to be a residual network defined with respect to f , where V (Gf) = V (G) and
(u, v) ∈ E(Gf) if cf (u, v) > 0. Figure 2 shows G with the residual edges. We will show that,
if there is a path from s to t in Gf , then f is not a max flow. If no such path exists, that f
is a max flow.

Lemma 4. If t is not reachable from s is Gf , then f is a maximum flow.

Proof. Let S be the set of nodes reachable from s in Gf and T = V \S. There are no edges
in Gf from S to T since the nodes in T are not reachable from s. Note that (S, T) defines
an s − t cut. Now consider any v ∈ S,w ∈ T . We have cf (v , w) = 0 since (v , w) is not an
edge in Gf . There are three cases:

1. If (v , w) ∈ E, then by definition cf (v , w) = c(v , w) − f (v , w) = 0 =⇒ c(v , w) =

f (v , w)

4

2. If (w, v) ∈ E, then cf (v , w) = f (w, v) = 0.

3. If (v , w) /∈ Eand(w, v) /∈ E, we can disregard (v , w) and (w, v) since they do not
appear in any flow or cut.

Using this, and the proof in Lemma 2, we have

|f | =
∑
v∈S

 ∑
x∈Nout(v)∩T

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)


=
∑
v∈S

∑
x∈Nout(v)∩T

f (v , x) (from case 2 the second term is 0)

=
∑
v∈S

∑
x∈Nout(v)∩T

c(v , x) (from case 1)

= c(S, T)

Thus, we show that the flow is equal to the cut. From Corollary 3 we know that f is a
maximum flow, and (S, T) is a min cut.

Lemma 5. If Gf has a path from s to t, we can modify f to f ′ such that |f | < |f ′|.

Proof. Pick a path P from s to t in Gf , and consider the edge of minimum capacity on the
path. Let that capacity be F . Then we can increase our flow by F . For each edge in P ,
if cf (v , w) is the right direction (i.e., there is an edge (v , w) ∈ E(G)), then we can increase
our flow on this edge by F . If cf (v , w) is in the opposite direction (i.e., (w, v) ∈ E(G)),
then we can decrease the flow on this edge by F . In effect, we are “undoing” the flow on
this edge. By doing so, we have increased our flow by F .

As an example, consider Fig. 2 again. The path s → a→ c → b → t is a path with minimum
capacity 2. Therefore, we can update our flow and push additional 2 units of flow, resulting
in a flow of 18.

Formally, Let s = x0 → x1 → ... → xk = t be a simple path P in Gf , and let F =
mini cf (xi , xi+1). Define a new flow f ′ where

f ′(u, v) =


f (u, v) + F if (u, v) ∈ P
f (u, v)− F if (v , u) ∈ P
f (u, v) otherwise .

We now need to show that f ′ is a flow. The capacity constraints are satisfied because for
every (u, v) ∈ E,

1. If (u, v) ∈ P , then 0 ≤ f (u, v)+F ≤ f (u, v)+ cf (u, v) = f (u, v)+ c(u, v)− f (u, v) =
c(u, v).

5

2. If (v , u) ∈ P , then f (u, v) − F ≤ f (u, v) ≤ c(u, v) and f (u, v) − F ≥ f (u, v) −
cf (v , u) = 0.

3. Otherwise, f (u, v) is from the original flow f .

The conservation constraints are also satisfied: Recall that P is a simple path. Thus, for
every v ∈ V \ {s, t}, P uses 0 or two edges incident on v . If P uses 0 edges on v , then flow
values of the edges incident on v have not changed when going from f to f ′ . Thus, suppose
that P uses two edges (x, v) and (v , y) incident on v . Because in Gf some edges appear in
the opposite direction compared to G, we need to consider a few cases.

1. (x, v) and (v , y) are both in the same direction (an edge into v and an edge out of v
); the flow into v increases by F and the flow out of it also increases by F .

2. (x, v) and (v , y) are both in the opposite direction ((v , x), (y , v) ∈ E); the flow into v
decreases by F and the flow out of it also decreases by F .

3. (x, v) is in the correct direction and (v , y) is in the opposite direction. Then the flow
into v changes by F − F = 0.

4. (x, v) is in the opposite direction and (v , y) is in the correct direction. Then the flow
out of v changes by F − F = 0.

Finally, note that we increase our flow by F . Consider the edge (s, x1) in P . If (s, x1) ∈ E,
the flow out of s increases by F . If (x1, s) ∈ E, the flow into s decreases by F . By our
definition of Gf , it must be that F > 0, and we get that |f ′| > |f |.

From this, we can construct an algorithm to find the maximum flow. Starting with some
arbitrary flow of the graph, construct the residual network, and check if there is a path from
s to t. If there is a path, update the flow, construct the new residual graph and repeat.
Otherwise, we have found the max flow.

A path from s to t in the residual graph is called an augmenting path, and pushing flow
through it to modify the current flow is referred to as augmenting along the path.

The run time of this algorithm is bounded by the number of times we update our flow. If the
edge capacities are all integers, we can increase the flow by at least 1 each time we update
our flow. Therefore, the runtime is O(|f |m) where |f | is the value of the max flow. If we have
rational edge capacities, then we can multiply all edge capacities by a factor to make them
all integers. However, the runtime blows up by that factor as well. If we have irrational edge
capacities, then the algorithm is no longer guaranteed to terminate. So we have a problem.

We will save the day in the next sections. Algorithm 1 is called the Ford-Fulkerson method.

It is actually part of a family of algorithms that depend on how the path P between s and t in
Gf is selected. One can obtain P via DFS, BFS, or any other method for selecting paths. It
turns out that two methods work particularly well: the shortest path method and the fattest
path method. The shortest path method is known as the Edmonds-Karp algorithm or Dinic’s
algorithm.

6

Algorithm 1: maxflow(G, s, t)
f ← all zeros flow
Gf ← G
while t is reachable from s in Gf (check using DFS/BFS) do
P ← path in Gf from s to t
F ← min capacity on P
f ← f ′ as defined in Lemma 5 above.
Update Gf to the corresponding new flow.

return f

The fattest path method. This method finds a path between s and t that maximizes
mine∈P cf (e) among all s − t paths P . Finding such a path can be done in O(m+ n) time by
a clever mix of linear time median-finding and DFS.

The shortest path method (the Edmonds-Karp algorithm/Dinic’s algorithm). This
method picks the path between s and t using BFS, thus picking a path that minimizes
the number of edges. Finding such a path also runs in O(m) time: BFS takes O(m + n) to
explore the whole graph, but since we only care about the vertices reachable from s this is
O(m) time.

Since both methods of selecting a path run in linear time, the main question becomes, how
many iterations does Ford-Fulkerson perform? We will answer these questions below in the
next section.

7

	Formulation of the Maximum Flow Problem
	Example
	Formulation of the Minimum Cut Problem
	The Max-Flow Min-Cut Theorem
	The Ford-Fulkerson Max-Flow Algorithm

