Adapted From Virginia Williams'lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 31

Minimum Spanning Trees

1 Introduction

Today we will continue our discussion of greedy algorithms, specifically in the context of
computing minimum spanning trees. There are many useful applications for finding a mini-
mum spanning tree of a graph from efficient network design to graph clustering analysis and
much more. We will also show that we can compute a minimum spanning tree of a graph in
polynomial time using some intuitive greedy algorithms.

The minimum spanning tree problem is formulated informally as follows: we are provided an
undirected graph G = (V, E) with weights w(e) € R for e € E and we want to compute
a subgraph of G that is a tree which connects all vertices in V' (a spanning tree) and has
minimum total edge weight defined as w(T) = > .+ w(e).

Below is an example of an MST of a graph. In the example, the edges forming the MST are
colored blue while edges that are not part of the MST are colored black:

2 A Template for Minimum Spanning Tree Algorithms

Let;s start by introducing a basic algorithm template which will guide our discussion towards
the actual algorithms for computing MSTs. These algorithms will in general follow the steps
described in the template below:

We will show that the template results in a valid MST by maintaining the invariant that there
exists at least one MST which contains all the edges in A. An edge is considered safe to
add to A as long as it maintains this invariant. We will see that this definition of a safe edge
can informally be defined as the edge with minimum weight which would not form a cycle if
included in A. The next section will introduce new terminology to define this formally.



Algorithm 1: Template for Minimum Spanning Tree Algorithms
A0
while A is not a spanning tree do
find edge (u, v) that is 'safe’ for A
L A+— AU{(u,v)}
return A

3 Cuts and Light Edges

We will introduce the notion of graph cuts to formally discuss which edges can be considered
safe to add to the MST edge set. Let a cut (S,V \ S) of a graph G = (V, E) be a partition
of V into two disjoint sets S and V' \ S. From this, we can say that an edge

(u,v)

crosses the cut (S,V \ S) if the edge has one endpoint in S and the other in V'\ S. We can
also say that a cut respects a subset A of edges if no edges in A cross the cut. An edge is
considered a light edge crossing a cut if its weight is the minimum of any edge crossing the
cut.

In the example above (Figure 3), let (S,V \ S) be a cut of the graph where S contains the
set of nodes above the red curve and V' \ S contains the set of nodes below it, and the set
A be the set of edges colored blue. The edges which cross the cut are exactly the following:
(a, h), (b, h),(b,c),(c,d)(d f) (e f) and the only light edge which crosses (S,V \ S) is
(¢, d). Since none of these edges are contained in the set A, the cut respects the set A.
Note that if we were to add any of the edges previously mentioned to A, then the cut would
no longer respect A.

Given the definitions above, let G = (V, E) be a connected and undirected graph with edge
weights w(e), A be a subset of E such that some MST of G contains A, (S,V'\ S) be a cut
that respects A, and (u, v) be a light edge crossing (S,V \ S).

Theorem 1. There exists an MST that contains AU {(u, v)}.
Proof. Let T be an MST containing A. As previously mentioned, (u, v) is a light edge which

crosses the cut (S,V \'S). Since T is already a spanning tree, note that adding any other
edge of the graph to it will lead to a cycle, so in particular adding (v, v) to T produces a



cycle. Consider a path p from u to v in T. There will necessarily be at least one edge (x, y)
of p which crosses the cut (S,V \ S) where (x,y) ¢ A because the cut respects A. Since
(u,v) is a light edge, w(u,v) < w(x,y). Deleting (x,y) from T and adding (u, v) yields
a new MST T’ . The only difference between T and T are the edges (x,y) and (u, v) so
w(T") < w(T). T"is an MST which contains AU {(u, v)}. O]

/ \

Note that in the proof, if w(T’) # w(T), then we have that our initial assumption of T being
an MST is false since we have found a spanning tree with smaller total edge weight. Because
of the theorem, we can add some additional points about the MST algorithm template.

e The MST algorithm maintains a subset A of edges with no cycles. That is, the graph
represented by G, = (V, A) is a forest (a set of distinct unconnected trees).

e Any safe edge (u, v) connects two distinct connected components of G4.

e For some connected component C = (¢, E¢) in Ga, the safe edge (u, v) is a light edge
crossing (Ve, V \ Vo).

4 Prim’s Algorithm

At a high level, the set A maintained by Prim’s algorithm is a single tree. The algorithm
starts with an arbitrary root r and in each step, a light edge leading out of A and connecting
to a node that has not yet been connected to A is selected and added to A. Once A connects
every node in the graph, it is returned as an MST of the graph.

Prim’s algorithm is similar to Dijkstra’s algorithm in that estimates of the distance to each
node are maintained and updated as the algorithm progresses. @ is a priority queue main-
taining distances of vertices not in the tree so far, key(v) is the minimum weight of edge
connecting v to some vertex in the tree, and p(v) is the parent of v in the tree.

Correctness Much of the correctness of Prim’s algorithm follows from Theorem 1. Notice
that at the beginning of every loop iteration, A = {(p(v),v) : v € (V\ {r} \ Q)} meaning
that the vertices already placed in the partial MST are those in V' \ Q. For all vertices v € Q,
if p(v) # NIL, then key(v) is the minimum weight of an edge connecting v to the partial
MST. This can be thought of in terms of graph cuts with partitions (Q,V \ Q) and the
vertices in Q with non-NIL parents as being the tail of edges crossing this cut. Since in Q,
only the vertices with non-NIL parents have key # oo (except for r in the first iteration), this
means that only the edges which cross the cut are considered at each iteration and the one



with minimum weight is added to A. This is exactly what the MST template algorithm does
(we add a safe edge) and as such, the correctness of the algorithm follows.

Algorithm 2: Prim(G)
key(v) <= oo,Vv € V
key(r) <~ 0
Q <+ (key(v),v),Vv eV
p(v) < NIL,Vv inV
A1
while Q is not empty do
u < ExtractMin(Q)
if u# r then
| A= AU{(p(u). 1)}
for each neighbor v of u do
if veQ andw(u,v) < key(v) then

L key(v) = w(u, v)

DecreaseKey(key(v), v)
p(v) =u

7return A

Running time Prim’s Algorithm can be implemented as a direct modification of Dijkstra’s
Algorithm and can achieve a similar running time, but its exact bound depends on the imple-
mentation of the priority queue.

If a red-black tree or a binary heap is used:

e ExtractMin: O(/ogn)

e DecreaseKey: O(logn)

e Total: O(nlogn+ mlogn) = O(mlogn)
If a Fibonacci heap is used:

e ExtractMin: O(logn)

e DecreaseKey: O(1) amortized

e Total: O(nlogn+ m)

Example In this example, we will run through the steps fo Prim’s algorithms in order to find
an MST for the graph in Figure 1:

Suppose we select node a to be the source node, r. We then extract node a from Q and set
key(b) =4, p(b) = a, key(h) = 8, and p(h) = a as shown in Figure 2.

Since key(b) is now the smallest value in the priority queue, we visit node b. Because p(b) = a
we add edge (a, b) to the set A. We then update the keys and parent fields of nodes that

4



Figure 2:

have edges connecting to b. Thus we set key(c) = 8 and p(c) = b as shown in Figure 3.

Figure 3:

The next smallest in the priority queue is a tie between key(c) and key(h). The algorithm
can pick either one - the results may be different, but both will be an MST. Let's say the
algorithm arbitrarily picks c. We add edge (b, c) to A and perform the following updates:
key(d) =7, p(d) = c, key(f) =4, p(f) = c, key(i) =2, and p(i) = ¢ as shown in Figure 4.



Figure 4:

key(/) is the smallest so we visit node /. Update the following: key(g) = 6, p(g) = I,
key(h) =7, and p(h) = i as shown in Figure 5.

Figure 5:

key(f) is the smallest so we visit node f. Update the following: key(g) = 2, p(g9) = f ,
key(e) = 10, and p(e) = f as shown in Figure 6.

Figure 6:

key(g) is the smallest so we visit node g. Update the following: key(h) =1 and p(h) = g as
shown in Figure 7.



Figure 7:

key(h) is the smallest so we visit node h. There are no updates at this step as shown in
Figure 8.

Figure 8:

key(d) is the smallest so we visit node d. Update the following: key(e) =9 and p(e) = d as
shown in Figure 9.

Figure 9:

Finally, key(e) is the smallest so we visit node e. There are no updates at this step and the
algorithm will detect that @ is empty at the next iteration and return as shown in Figure 10.

-



Figure 10:



	Introduction
	 A Template for Minimum Spanning Tree Algorithms
	Cuts and Light Edges
	Prim's Algorithm

