
Adapted From Virginia Williams’lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 30

More Greedy: Huffman Coding and MST

1 Activity Selection

Last lecture, we introduced the activity selection problem and walkted through a few possible
candidates for greedy algorithms.

Proposition 1. For each Si ,j , there is an optimal solution Ai ,j containing ak ∈ Si ,j of minimum
finishing time fk .

Note that if the proposition is true, when fk is minimum, then Ai ,k is empty, as no activities
can finish before ak ; thus, our optimal solution only depends on one other subproblem Ak,j
(giving us a linear time algorithm).

Here, we prove the proposition.

Proof. Let ak be the activity of minimum finishing time in Si ,j . Let Ai ,j be some maximum
set of non-conflicting activities. Consider A′i ,j = Ai ,j \ al ∪ ak where al is the activity of
minimum finishing time in Ai ,j . It’s clear that |A′i ,j | = |Ai ,j |. We need to show that A′i ,j does
not have conflicting activities. We know al ∈ Ai ,j ⊂ Si ,j . This implies fl ≥ fk , since ak has
the minimum finishing time in Si ,j .

All at ∈ Ai ,j \ al don’t conflict with al , which means that st ≥ fl , which means that st ≥ fk
, so this means that no activity in Ai ,j \ al can conflict with ak . Thus, A′i ,j is an optimal
solution.

Due to the above proposition, the expression for Ai ,j from before simplifies to the following
expression in terms of ak ⊆ Si ,j , the activity with minimum finishing time fk .

|Ai ,j | = 1 + |Ak,j |
Ai ,j = Ak,j ∪ {ak}

Algorithm Greedy-AS assumes that the activities are presorted in nondecreasing order of their
finishing time, so that if i < j , fi ≤ fj .

By the above claim, this algorithm will produce a legal, optimal solution via a greedy selection
of activities. There may be multiple optimal solutions, but there always exists a solution
that includes ak with the minimum finishing time. The algorithm does a single pass over
the activities, and thus only requires O(n) time – a dramatic improvement from the trivial

1

Algorithm 1: Greedy-AS(a)
A← {a1} /* activity of min fi
k ← 1
for m = 2→ n do
if sm ≥ fk then

// am starts after last activity in A
A← A ∪ {am}
k ← m

return A

dynamic programming solution. If the algorithm also needed to sort the activities by fi , then
its runtime would be O(n log n) which is still better than the original dynamic programming
solution.

2 Scheduling

Consider another problem that can be solved greedily. We are given n jobs which all need a
common resource. Let wj be the weight (or importance) and lj be the length (time required)
of job j . Our output is an ordering of jobs. We define the completion time cj of job j to be
the sum of the lengths of jobs in the ordering up to and including lj . Our goal is to output
an ordering of jobs that minimizes the weighted sum of completion times

∑
j wjcj .

2.1 Intuition

Our intuition tells us that if all jobs have the same length, then we prefer larger weighted jobs
to appear earlier in the order. If jobs all have equal weights, then we prefer shorter length
jobs in the order.

In the first case, assuming they all have equal weights of 1,
∑3
i=1 wici = 1 + 3 + 6 = 10. In

the second case,
∑3
i=1 wici = 3 + 5 + 6 = 14.

2.2 Optimal Substructure

What do we do in the cases where li < lj and wi < wj? Consider the optimal ordering of jobs.
Suppose we have a job i that is followed by job j in the optimal order. Consider swapping
jobs i and j . The example below swaps jobs 1 and 2.

Note that swapping jobs i and j does not alter the completion times for every other job and
only changes the completion times for i and j . ci increases by lj and cj decreases by li . This

2

means that our objective function
∑
i wici changes by wi lj−wj li . Since we assumed our order

was optimal originally, our objective function cannot decrease after swapping the jobs. This
means,

wi lj − wj li ≥ 0

which implies
lj
wj
≥
li
wi

Therefore, we want to process jobs in increasing order of li
wi
, the ratio of the length to the

weight of each job. The algorithm also does a single pass over jobs, and thus only requires
O(n) time, assuming the jobs were ordered by li

wi
. Like previously, if the algorithm also needed

to sort the jobs based on the ratio of length to weight, then its runtime would be O(n log n).

3 Optimal Codes

Our third example comes from the field of information theory. In ASCII, there is a fixed 8
bit code for each character. Suppose we want to incorporate information about frequencies
of characters to obtain shorter encodings. What if we want to represent characters by codes
of different lengths depending on each character’s frequencies? We explore a greedy solution
to find the optimal encoding of characters.

To create optimal codes, we want a way to encode and decode our sequence. To encode the
sequence, we would just have to concatenate the code of each character together. How about
for decoding? Consider the following codes of characters: a → 0, b → 1, c → 01. However,
when decoding, when we encounter 01, this could be decoded as “ab”or “c”. Therefore, our
codes need to be prefix free: no codeword is a prefix of another.

3.1 Tree Representation

We may think of representing our codes in a tree structure, where the codewords represent
the leaves of our tree. An example is shown below:

Above, in addition to the characters {a, b, c, d, e, f }, we’ve included frequency information.
That is, f (a) = 0.45 means that the probability of a random character in this language being
equal to a is .45. The code for each character can be found by concatenating the bits of
the path from the root to the leaves. By convention, every left branch is given the bit 0 and
every right branch is given the bit 1.

As long as the characters are on the leaves of this tree, the corresponding code will be
prefixfree. This is because one string is a prefix of another if and only if the node corresponding
to the first is an ancestor of the node corresponding to the second. No leaf is an ancestor of
any other leaf, so the code is prefix-free.

3

3.2 How good is a code?

Suppose we have a set of characters C with frequenciesf (c) so that
∑
c∈C f (c) = 1. That

is, f (c) can be thought of as the probability of using a letter c in this language. The cost,
in terms of bits, of a character c ∈ C when using the coding scheme represented by a tree
T is just the depth in the tree T : cost(c) = dT (c). For example, in the tree above, e has
depth 4 in the tree, and requires 4 bits to represent. The average cost of the tree is

B(T) = Ec∈C[dt(C)] =
∑
c∈C

f (c)dT (c)

We say that a tree T is optimal if this expected cost B(T) is as small as possible.

3.3 Huffman Codes

In 1951, David A. Huffman, in his MIT information theory class, was given the choice of a
term paper or final exam. Huffman chose to do the term paper rather than take the final
exam. He found greedy algorithm to find the most efficient binary code, which we know
today as Huffman codes.

4

The basic idea is this: build subtrees for subsets of characters and merge them from the
bottom up, combining the two trees with the characters of minimum total frequency.

Algorithm 2: A high-level description of the Huffman Coding algorithm
Input: Set of characters C = {c1, c2, · · · , cn} of size n, and
F = {f (c1), f (c2), · · · , f (cn)}, a set of frequencies.
Create nodes Nk for each character ck with key f (ck)
Let the current denote the set {N1, · · · , Nn} of nodes.
while current has length of more than one do
Find the two nodes Ni and Nj in the current with the minimum frequencies and
create a new intermediate node I with Ni and Nj as its children, so that I.key
= Ni .key +Nj .key.
Add I to the current and remove Ni , Nj
return the only entry of current, which is the root of the tree

The tree shown above results from running this algorithm on the letters with those frequencies;
see the slides for an illustration of this process.

3.4 Proof of Correctness

This algorithm works, but at first it’s not at all obvious why. For a rigorous proof, refer to
Lemmas 16.2 and 16.3 in CLRS. However, we’ll sketch the idea below. Formally, the proof
goes by induction. Recall that after iteration t in Algorithm 2, we have a list current, which
contains the roots of subtrees that we still need to merge up. We will maintain the following
inductive hypothesis:

• Inductive hypothesis: Suppose we have completed t iterations of the loop in Algorithm
2. Then there exists a way to merge the subtrees in current that is optimal.

• For the base case, we observe that when t = 0, current is just the set of all characters,
and definitionally there exists an optimal tree made out of these nodes.

• For the inductive step, we need to show that if the inductive hypothesis holds at step
t − 1, then it holds at step t. We’ll sketch this later.

• Finally, to conclude the argument, we see that at the end of the algorithm, there is only
one element in current, and in this case the inductive hypothesis reads that there is a
way to merge this single subtree to obtain an optimal subtree. That’s just a convoluted
way of saying that the single tree we return is optimal, and so we are done.

All that remains to show is the inductive step. We first observe the following claim:

Proposition 2. We are given a set of characters C and a set of its associated frequencies
F where f (c) is the frequency of character c . Let x and y be the characters with the two
smallest frequencies. There exists an optimal coding tree for C such that x , y are sibling
leaves.

5

Proof. Let T be the optimal coding tree for C. The optimal coding tree must be a full binary
tree, that is, every non-leaf node must have two children. Let a, b be characters that are
sibling leaves of maximum depth. We define the number of bits to encode c as dT (c) and
the number of bits needed for the coding tree as B(T) =

∑
c f (c)dT (c).

We can replace a, b by x, y without increasing the total number of bits needed for the coding
tree.1 If we swap x and a, the change in cost becomes f (x)dT (a)+ f (a)dT (x)− f (x)dT (x)−
f (a)dT (a) = (f (x)− f (a))(dT (a)− dT (x)) ≤ 0

Therefore, swapping a, b with x, y will not increase our objective function B(T). Hence,
there exists an optimal coding tree where x, y are siblings in the tree.

Proposition 3. Let C be a set of characters, and let T be an optimal coding tree for C.
Imagine creating C ′ from C by collapsing all the characters in a subtree rooted at a node N
with key k = N.key into a single character c ′ with frequency k . Then the corresponding tree
T ′ is optimal for C ′ . Conversely, suppose that a tree T ′ that is an optimal coding tree for
an alphabet C ′ . Let c ′ ∈ C ′ be a character with frequency f (c ′). Introduce new characters
c ′′1 , · · · , c ′′r with total frequency

∑r
i=1 f (c

′′i) = f (c ′). Let T ′ be an optimal coding tree on
c ′′1 , · · · , c ′′r . Then the tree T on the alphabet C = (C ′ \ {c ′}) ∪ {c ′′1 , · · · , c ′′r} that has the
leaf c ′ replaced with the subtree T ′ is optimal.

Proof. Let T and T’ be the two trees described in the lemma, and consider the difference of
their costs.

B(T)− B(T ′) =
∑
c∈C

f (c) · dT (c)−
∑
c∈C′
f (c)dT ′(c)

=

(
r∑
i=1

f (c ′′i dT (c
′′
i))− f (c ′)dT ′(c ′)

)

=

(
r∑
i=1

f (c ′′i)(dT ′′(c
′′
i) + dT ′(c

′))

)
− f (c ′)dT ′(c ′)

=

r∑
i=1

f (c ′′i)dT ′′(c
′′
i) + dT ′(c

′)

r∑
i=1

f (c ′′i)− f (c ′)dT ′(c ′)

=

t∑
i=1

f (c ′′i)dT ′′(c
′′
i)

where the last line used the fact that
∑r
i=1 f (c

′′
i) = f (c

′), and so the last two terms cancelled.
This means that the difference in the cost between these two trees only depends on T ′′, it
doesn’t depend at all about the structure of T . Thus, T is optimal if and only if T ′ is
optimal.

1For simplicity, we ignore the case where a, b, x, y are not distinct. For more details, see Lemma 16.2 in
CLRS

6

The two Claims together prove the inductive step, because the second claim implies that the
logic of the first claim holds, even for newly created intermediate nodes I.

Note: The proof in CLRS has the same basic steps (Lemmas 16.2 and 16.3 instead of the
claims above), although phrased slightly differently. The sketch above is pretty sketchy, so if
the above is hard to follow, please check out CLRS for a more detailed version.

7

	Activity Selection
	Scheduling
	Intuition
	Optimal Substructure

	Optimal Codes
	Tree Representation
	How good is a code?
	Huffman Codes
	Proof of Correctness

