
COMP 285 (NC A&T, Spr ‘22) Lecture 3

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Asymptotics and Worst-Case Analysis

1 Asymptotic Notation

To talk about the running time of algorithms, we will use the following notation. T (n) denotes
the runtime of an algorithm on input of size n.

1.1 “Big-Oh” Notation:

Intuitively, Big-Oh notation gives an upper bound on a function. We say T (n) is O(f (n))

when as n gets big, f (n) grows at least as quickly as T (n). Formally, we say

T (n) = O(f (n)) ⇐⇒ ∃c, n0 > 0 s.t ∀n ≥ n0, 0 ≤ T (n) ≤ c · f (n)

1.2 “Big-Omega” Notation:

Intuitively, Big-Omega notation gives a lower bound on a function. We say T (n) is Ω(f (n))

when as n gets big, f (n) grows at least as slowly as T (n). Formally, we say

T (n) = O(f (n)) ⇐⇒ ∃c, n0 > 0 s.t ∀n ≥ n0, 0 ≤ c · f (n) ≤ T (n)

1.3 “Big-Theta” Notation:

Intuitively, Big-Theta notation gives both a lower and upper bound on a function. We say
T (n) is Θ(f (n)) if and only if T (n) = O(f (n)) and T (n) = Ω(f (n)).

T (n) = O(f (n)) ⇐⇒ ∃c1, c2, n0 > 0 s.t ∀n ≥ n0, 0 ≤ c1f (n) ≤ T (n) ≤ c2f (n)

We can see that these notations really do capture exactly the behavior that we want - namely,
to focus on the rate of growth of a function as the inputs get large, ignoring constant factors
and lower order terms. As a sanity check, consider the following example and non-example.

Claim 1. All degree-k polynomials1 are O(nk). Proof. Suppose T (n) is a degree-k polyno-
mial. That is, T (n) = akn

k + · · ·+ a1n + a0 for some choice of ai ’s where ak 6= 0. To show

1To be more precise, all degree-k polynomials T such that T (n) ≥ 0 for all n ≥ 1. How would you adapt
this proof to be true for all degree-k polynomials T with positive leading coefficients?

1

Figure 1: Figure 3.1 from CLRS - Examples of Asymptotic Bounds. (Note: In these examples,
f (n) corresponds to our T (n) and g(n) to our f (n)).

that T (n) is O(nk) we must find a c and n0 such that for all n ≥ n0, T (n) ≤ c · nk . (Since
T (n) represents the running time of an algorithm, we assume it is positive.) Let n0 = 1 and
let a∗ = maxi |ai |. We can bound T (n) as follows:

T (n) = akn
k + · · ·+ a1n + a0

≤ a∗nk + · · ·+ a∗n + a∗

≤ a∗nk + · · ·+ a∗nk + a∗nk

= (k + 1)a∗ · nk

Let c = (k + 1)a∗ which is constant, independent of n. Thus, we’ve exhibited c, n0 which
satisfy the Big-Oh definition, so T (n) = O(nk).

Claim 2. For any k ≥ 1, nk is not O(nk−1). Proof. By contradiction. Assume nk = O(nk−1).
Then there is some choice of c and n0 such that nk ≤ c ·nk−1 for all n ≥ n0. But this in turn
means that n ≤ c for all n ≥ n0, which contradicts the fact that c is a constant, independent
of n. Thus, our original assumption was false and nk is not O(nk−1).

2 MergeSort

Recall the Divide-and-conquer paradigm from the second lecture. In this paradigm, we use
the following strategy:

• Break the problem into sub-problemsn.

• Solve the sub-problems (often recursively)

• Combine the results of the sub-proboems to solve the big problem.

At some point, the sub-problems become small enough that they are easy to solve, and then
we can stop recursing.

2

With this approach in mind, MergeSort is a very natural algorithm to solve the sorting
problem.

The pseudocode is below:

MergeSort(A):
n = len(A)
if n <= 1:

return A
L = MergeSort(A[:n/2])
R = MergeSort(A[n/2:])
return Merge(L, R)

Above, we are using Python notation, so A[: n/2] = [A[0], A[1], . . . , A[n/2− 1]] and A[n/2 :

] = [A[n/2], ..., A[n − 1]]. Additionally, we’re using integer division, so n/2 means bn/2c.

How do we do the Merge procedure? We need to take two sorted arrays, L and R, and
merge them into a sorted array that contains both of their elements. See the slides for a
walkthrough of this procedure.

Merge(L, R):
m = len(L) + len(R)
S = []
for k in range(m):

if L[i] < R[j]:
S.append(L[i])
i += 1

else:
S.append(R[j])
j += 1

return S

Note: This pseudocode is incomplete! What happens if we get to the end of L or R? Try
to adapt the pseudocode above to fix this.

As before, we need to ask: Does it work? And does it have good performance?

3

	Asymptotic Notation
	``Big-Oh'' Notation:
	``Big-Omega'' Notation:
	``Big-Theta'' Notation:

	MergeSort

