COMP 285 (NC A&T, Spr ‘22) Lecture 3

Adapted From Virginia Williams' lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Asymptotics and Worst-Case Analysis

1 Asymptotic Notation

To talk about the running time of algorithms, we will use the following notation. T (n) denotes
the runtime of an algorithm on input of size n.

1.1 “Big-Oh” Notation:

Intuitively, Big-Oh notation gives an upper bound on a function. We say T(n) is O(f(n))
when as n gets big, f(n) grows at least as quickly as T(n). Formally, we say

T(n)=0(f(n)) < dc,ng>0stVn>ng,0<T(n) <c-f(n)

1.2 “Big-Omega” Notation:

Intuitively, Big-Omega notation gives a lower bound on a function. We say T(n) is Q(f(n))
when as n gets big, f(n) grows at least as slowly as T(n). Formally, we say

T(n)=0(f(n)) < dc,ng >0stVn>ny,0<c-f(n)<T(n)

1.3 “Big-Theta” Notation:

Intuitively, Big-Theta notation gives both a lower and upper bound on a function. We say
T(n)is ©(f(n)) if and only if T(n) = O(f(n)) and T(n) = Q(f(n)).

T(n)=0(f(n)) < dc1,c,n0>0stV¥n>ny,0< cif(n) <T(n) < cf(n)

We can see that these notations really do capture exactly the behavior that we want - namely,
to focus on the rate of growth of a function as the inputs get large, ignoring constant factors
and lower order terms. As a sanity check, consider the following example and non-example.

Claim 1. A/l degree-k polynomials' are O(n*). Proof. Suppose T (n) is a degree-k polyno-
mial. Thatis, T(n) = axn* +--- + a;n + ap for some choice of a;'s where ax # 0. To show

To be more precise, all degree-k polynomials T such that T(n) > 0 for all n > 1. How would you adapt
this proof to be true for all degree-k polynomials T with positive leading coefficients?

c28(n) cg(n)
f(n)
f(n))
c1g(n) <8(")
n - n 1 n
Ho . no . no .
f(n) = 0(gn)) f(n) = 0(g(n)) f(n) = Q(gn))

() (b) ()

Figure 1: Figure 3.1 from CLRS - Examples of Asymptotic Bounds. (Note: In these examples,
f(n) corresponds to our T(n) and g(n) to our f(n)).

that T(n) is O(n*) we must find a ¢ and ny such that for all n > ng, T(n) < ¢ - n*. (Since
T (n) represents the running time of an algorithm, we assume it is positive.) Let ng = 1 and
let a* = max;|a;|. We can bound T (n) as follows:

T(n) = an*+--+an+ a
<a'n +-.-+an+a
<a'nf 4.4 anf+atn”
= (k+1)a*-n*
Let ¢ = (k + 1)a* which is constant, independent of n. Thus, we've exhibited ¢, n0 which
satisfy the Big-Oh definition, so T(n) = O(n*).

Claim 2. Forany k > 1, nk is not O(n*=1). Proof. By contradiction. Assume n* = O(nk=1).
Then there is some choice of ¢ and n0 such that n* < c-n*~! for all n > ny. But this in turn
means that n < ¢ for all n > ng, which contradicts the fact that c is a constant, independent
of n. Thus, our original assumption was false and n* is not O(nk71).

2 MergeSort

Recall the Divide-and-conquer paradigm from the second lecture. In this paradigm, we use
the following strategy:

e Break the problem into sub-problemsn.

e Solve the sub-problems (often recursively)

e Combine the results of the sub-proboems to solve the big problem.

At some point, the sub-problems become small enough that they are easy to solve, and then
we can stop recursing.

With this approach in mind, MergeSort is a very natural algorithm to solve the sorting
problem.

The pseudocode is below:

MergeSort (A) :
n = len(A)
if n <= 1:
return A
L = MergeSort(A[:n/2])
R = MergeSort(A[n/2:])
return Merge(L, R)

Above, we are using Python notation, so A[: n/2] = [A[0], A[1],. .., A[n/2 —1]] and A[n/2 :
] =[A[n/2], ..., A[n — 1]]. Additionally, we're using integer division, so n/2 means |[n/2].

How do we do the Merge procedure? We need to take two sorted arrays, L and R, and
merge them into a sorted array that contains both of their elements. See the slides for a
walkthrough of this procedure.

Merge(L, R):
m = len(L) + len(R)
s=11]
for k in range(m):
if L[i] < R[j]:
S.append(L[i])

i+=1
else:
S.append(R[j])
j=1
return S

Note: This pseudocode is incomplete! What happens if we get to the end of L or R? Try
to adapt the pseudocode above to fix this.

As before, we need to ask: Does it work? And does it have good performance?

	Asymptotic Notation
	``Big-Oh'' Notation:
	``Big-Omega'' Notation:
	``Big-Theta'' Notation:

	MergeSort

