
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 28

Getting Greedy with Algorithms

1 Greedy Algorithms

Suppose we want to solve a problem, and we’re able to come up with some recursive formu-
lation of the problem that would give us a nice dynamic programming algorithm. But then,
upon further inspection, we notice that any optimal solution only depends on looking up the
optimal solution to one other subproblem. A greedy algorithm is an algorithm which exploits
such a structure, ignoring other possible choices. Greedy algorithms can be seen as a refine-
ment of dynamic programming; in order to prove that a greedy algorithm is correct, we must
prove that to compute an entry in our table, it is sufficient to consider at most one other
table entry; that is, at each point in the algorithm, we can make a “greedy”, locally-optimal
choice, and guarantee that a globally-optimal solution still exists. Instead of considering mul-
tiple choices to solve a subproblem, greedy algorithms only consider a single subproblem, so
they run extremely quickly – generally, linear or close-to-linear in the problem size.

Unfortunately, greedy algorithms do not always give the optimal solution, but they frequently
give good (approximate) solutions. To give a correct greedy algorithm one must first identify
optimal substructure (as in dynamic programming), and then argue that at each step, you
only need to consider one subproblem. That is, even though there may be many possible
subproblems to recurse on, given our selection of subproblem, there is always an optimal
solution that contains the optimal solution to the selected subproblem.

1.1 Activity Selection

One problem, which has a very nice (correct) greedy algorithm, is the Activity Selection
Problem.

In this problem, we have a number of activities. Your goal is to choose a subset of the activities
to participate in. Each activity has a start time and end time, and you can’t participate in
multiple activities at once. Thus, given n activities a1, a2, · · · , an where ai has start time si
and finish time fi , we want to find a maximum set of non-conflicting activities.

The activity selection problem has many applications, most notably in scheduling jobs to run
on a single machine.

1.1.1 Optimal Substructure

Let’s start by considering a subset of the activities. In particular, we’ll be interested in
considering the set of activities Si ,j that start after activity ai finishes and end before activity

1

aj starts. That is, Si ,j = {ak | fi ≤ sk , fk ≤ sj}. We can participate in these activities between
ai and aj . Let Ai ,j be a maximum subset of non-conflicting activities from the subset Si ,j .
Our first intuition would be to approach this by using dynamic programming. Suppose some
ak ∈ Ai ,j , then we can break down the optimal subsolution Ai ,j as follows

|Ai ,j | = 1 + |Ai ,k |+ |Ak,j |

where Ai ,k is the best set for Si ,k(before ak), and Ak,j is the best set for after ak . Another
way of interpreting this expression is to say “once we place ak in our optimal set, we can only
consider optimal solutions to subproblems that do not conflict with ak .”

Thus, we can immediately come up with a recurrence that allows us to come up with a
dynamic programming algorithm to solve the problem.

|Ai ,j | = max
ak∈Si ,j

1 + |Ai ,k |+ |Ak,j |

.

This problem requires us to fill in a table of size n2, so the dynamic programming algorithm
will run in Ω(n2) time. The actual runtime is O(n3) since filling in a single entry might take
O(n) time.

But we can do better! We will show that we only need to consider the ak with the smallest
finishing time, which immediately allows us to search for the optimal activity selection in
linear time.

Proposition 1. For each Si ,j , there is an optimal solution Ai ,j containing ak ∈ Si ,j of minimum
finishing time fk .

Note that if the proposition is true, when fk is minimum, then Ai ,k is empty, as no activities
can finish before ak ; thus, our optimal solution only depends on one other subproblem Ak,j
(giving us a linear time algorithm).

Here, we prove the proposition.

Proof. Let ak be the activity of minimum finishing time in Si ,j . Let Ai ,j be some maximum
set of non-conflicting activities. Consider A′i ,j = Ai ,j \ al ∪ ak where al is the activity of
minimum finishing time in Ai ,j . It’s clear that |A′i ,j | = |Ai ,j |. We need to show that A′i ,j does
not have conflicting activities. We know al ∈ Ai ,j ⊂ Si ,j . This implies fl ≥ fk , since ak has
the minimum finishing time in Si ,j .

All at ∈ Ai ,j \ al don’t conflict with al , which means that st ≥ fl , which means that st ≥ fk
, so this means that no activity in Ai ,j \ al can conflict with ak . Thus, A′i ,j is an optimal
solution.

Due to the above proposition, the expression for Ai ,j from before simplifies to the following
expression in terms of ak ⊆ Si ,j , the activity with minimum finishing time fk .

2

|Ai ,j | = 1 + |Ak,j |
Ai ,j = Ak,j ∪ {ak}

Algorithm Greedy-AS assumes that the activities are presorted in nondecreasing order of their
finishing time, so that if i < j , fi ≤ fj .

Algorithm 1: Greedy-AS(a)
A← {a1} /* activity of min fi
k ← 1

for m = 2→ n do
if sm ≥ fk then

// am starts after last activity in A
A← A ∪ {am}
k ← m

return A

By the above claim, this algorithm will produce a legal, optimal solution via a greedy selection
of activities. There may be multiple optimal solutions, but there always exists a solution
that includes ak with the minimum finishing time. The algorithm does a single pass over
the activities, and thus only requires O(n) time – a dramatic improvement from the trivial
dynamic programming solution. If the algorithm also needed to sort the activities by fi , then
its runtime would be O(n log n) which is still better than the original dynamic programming
solution.

3

	Greedy Algorithms
	Activity Selection
	Optimal Substructure

