
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 26

Dynamic Programmig IV - LCS, Unbounded Knapsack

1 Longest Common Subsequence

We now consider the longest common subsequence problem which has applications in spellcheck-
ing, biology (whether different DNA sequences correspond to the same protein), and more.

We say that a sequence Z is a subsequence of a sequence X if Z can be obtained from X
by deleting symbols. For example, abracadabra has baab as a subsequence, because we can
obtain baab by deleting a, r, cad, and ra. We say that a sequence Z is a longest common
subsequence (LCS) of X and Y if Z is a subsequence of both X and Y , and any sequence
longer than Z is not a subsequence of at least one of X or Y . For instance, the LCS of
abracadabra and bxqrabry is brabr.

Using the definition of LCS, we define the LCS problem as follows: Given sequences X and
Y , find the length of their LCS, Z (and if we are proceeding to Step 4 of the outline above,
output Z). In what follows, suppose that the sequence X is X = x1x2x3 · · · xm, so that X
has length m, and suppose that Y = y1y2 · · · yn as length n. We’ll use the notation X[1 : k]
as usual to denote the prefix X[1 : k] = x1x2 · · · xk .

1.1 Steps 1 and 2: Identify optimal substructure, and write a recursive
formulation

Our sub-problems will be to solve LCS on prefixes of X and Y . To see how we can do this,
we consider the following two cases.

1. Case 1: xm = yn. If xm = yn = `, then any LCS Z has ` as its last symbol. Indeed,
suppose that Z ′ is any common subsequence that does not end in `: then we can always
extend it by appending ` to Z ′ to obtain another (longer) legal common subsequence.
Thus, if |Z| = k and xm = yn = `, we can write

Z[1 : k − 1] = LCS(X[1 : m − 1], Y [1 : n − 1])

and
Z = Z[1 : k − 1] ◦ `

, where ◦ denotes the concatenation operation on strings.

2. Case 2: xm 6= yn. As above, let Z be the LCS of X and Y . In this case, the last letter
of Z (call it zk) is either not equal to xm or it is not equal to yn. (Notice that this or

1

is not an exclusive or; maybe zk isn’t equal to either xm or yn). In this case, at least
one of xm or yn cannot appear in the LCS of X and Y ; this means that either

LCS(X, Y) = LCS(X[1 : m − 1], Y)

or
LCS(X, Y) = LCS(X, Y [1 : n − 1])

, whichever is longer. That is, we can shave one letter off the end of either X or Y .
In particular, the length of LCS(X, Y) is given by

lenLCS(X, Y) = max{lenLCS(X[1 : m − 1], Y), lenLCS(X, Y [1 : n − 1])}

.

This immediately gives us our recursive formulation. Let’s keep a table C, so that

C[i , j] = length of LCS(X[1 : i], Y [1 : j])

Then we have the relationship:

C[i , j] =

0 i = 0 or j = 0

C[i − 1, j − 1] + 1 X[i] = Y [j], i , j > 0

max{C[i − 1, j], C[i , j − 1]} X[i] 6= Y [j], i , j > 0

Suppose we keep a table C, where C[i , j] maintains the length of LCS(X[1 : i], Y [1 : j]), the
longest common subsequence of X[1 : i] and Y [1 : j]. Then, we can fill in the values of C
using the following recurrence:

C[i , j] =

{
C[i − 1, j − 1] + 1 X[i] = Y [j]

max{C[i − 1, j], C[i , j − 1]} otherwise

Technically, we should do a proof here to show that this recurrence is correct. See CLRS for
the details, but it is true that if we define C[i , j] recursively as above, then indeed, C[i , j] is
equal to the length of LCS(X[1 : i], Y [1 : j]). (Good exercise: prove this for yourself using
induction).

1.2 Step 3: Define an algorithm using our recursive relationship.

The recursive relationship above naturally gives rise to a DP algorithm for filling out the table
C:

Note that there are only n × m entries in our table C. This is where the overlapping sub-
problems come in: we only need to compute each entry once, even though we may access it
many times when filling out subsequent entries.

2

Algorithm 1: lenLCS(X,Y)
Initialize an n + 1×m + 1 zero-indexed array C
Set C[0, j] = C[i , 0] = 0 for all i , j ∈ {1, · · · , m} × {1, · · · , n}
for i = 1, · · · , m do
for j = 1, · · · , n do
if X[i] == Y [j] then
C[i , j] = 1 + C[i − 1, j − 1]

else
C[i , j] = max{C[i − 1, j], C[i , j − 1]}

end if
end for

end for
return C

We can also see that C[i , j] only depends on three possible prior values: C[i −1, j], C[i , j −1],
and C[i − 1, j − 1]. This means that each time we compute a new value C[i , j] from previous
entries, it takes time O(1).

Thus, we can start to see how to obtain an algorithm for filling in the table and obtaining
the LCS. First, we know that any string of length 0 will have an LCS of length 0. Thus, we
can start by filling out C[0, j] = 0 for all j and similarly, C[i , 0] = 0 for all i . Then, we can
fill out the rest of the table, filling the rows from bottom up (i from 1 to m) and filling each
row from left to right (j from 1 to n). The pseudocode is given in Algorithm 1.

As mentioned above, in order to fill each entry, we only need to perform a constant number
of lookups and additions. Thus, we need to do a constant amount of work for each of the
m × n entries, giving a running time of O(mn).

1.3 Step 4: Recovering the actual LCS

Algorithm 1 only computes the length of the LCS of X and Y . What if we want to recover
the actual longest common subsequence? In Algorithm 2, we show how we can construct
the actual LCS, given the dynamic programming table C that we’ve filled out in Algorithm 1.

In this algorithm, we start from the end of X and Y and work backward, using our table C
as a guide. We start with i = m and j = m. If at some point (i , j), we see that X[i] = Y [j],
then decrement both i and j . On the other hand, if X[i] 6= Y [j], then we know that we need
to drop a symbol from either X or Y . The table C will tell us which: if C[i , j] = C[i , j − 1],
then we can drop a symbol from Y and decrement j . If C[i , j] = C[i − 1, j], then we can
drop a symbol from X and decrement i . Of course, it might be the case that both of these
hold; in this case it doesn’t matter which we decrement, and our pseudocode will be default
decrement j .

How long does this take? Notice that in each step, the sum i + j is decremented by at least

3

one (maybe two) and stops as soon as one of i , j is equal to zero; this is at least before
i + j = 0. Thus, the number of times we decrement i + j is at most m + n, which was their
total value to start.

Because at each step of Algorithm 2, the work is O(1), the total running time is thus O(n+m),
which is subsumed by the runtime of O(mn) necessary to fill in the table.

Algorithm 2: LCS(X,Y)
// C is filled out already
L←
i ← m
j ← n
while i > 0 and j > 0 do
if X[i] = Y [j] then
Append X[i] to the beginning of L
i ← i − 1
j ← j − 1

else if C[i , j] = C[i , j − 1] then
j ← j − 1

else
i ← i − 1

end if
end while

The conclusion is that we can find LCS(X, Y) of a sequence X of length m and a sequence
Y of length n in time O(mn).

Interestingly, this simple dynamic programming algorithm is basically the best known algorithm
or solving the LCS problem. It is conjectured that this algorithm may be essentially optimal.
It turns out that giving an algorithm that (polynomially) improves the dependence on m andn
over the O(mn) strategy outlined above would imply a major breakthrough in algorithmsfor
the boolean satisfiability problem – a problem widely believed to be computationally hard to
solve.

2 The Knapsack Problem

This is a classic problem, defined as the following:

We have n items, each with a value and a positive weight. The i-th item has weight wi and
value vi . We have a knapsack that holds a maximum weight of W . Which items do we put
in our knapsack to maximize the value of the items in our knapsack? For example, let’s say
that W = 10; that is, the knapsack holds a weight of at most 10. Also suppose that we have
four items, with weight and value:

4

Item Weight Value
A 6 25
B 3 13
C 4 15
D 2 8

We will talk about two variations of this problem, one where you have infinite copies of each
item (commonly known as Unbounded Knapsack), and one where you have only one of each
item (commonly known as 0-1 Knapsack).

What are some useful subproblems? Perhaps it’s having knapsacks of smaller capacities, or
maybe it’s having fewer items to choose from. In fact, both of these ideas for subproblems
are useful. As we will see, the first idea is useful for the Unbounded Knapsack problem, and
a combination of the two ideas is useful for the 0-1 Knapsack problem.

2.1 The Unbounded Knapsack Problem

In the example above, we can pick two of item B and two of item D. Then, the total weight
is 10, and the total value 42.

We define K(x) to be the optimal solution for a knapsack of capacity x . Suppose K(x)
happens to contain the i-th item. Then, the remaining items in the knapsack must have a
total weight of at most x − wi . The remaining items in the knapsack must be an optimum
solution. (If not, then we could have replaced those items with a more highly valued set of
items.) This gives us a nice subproblem structure, yielding the recurrence

K(x) = max
i :wi≤x

(K(x − wi) + vi)

.

Developing a dynamic programming algorithm around this recurrence is straightforward. We
first initialize K(0) = 0, and then we compute K(x) values from x = 1, · · · ,W . The overall
runtime is O(nW).

Remark 1. This solution is not actually polynomial in the input size because it takes logW)
bits to represent W . We call these algorithms “pseudo-polynomial.” If we had a polynomial
time algorithm for Knapsack, then a lot of other famous problems would have polynomial
time algorithms. This problem is NP-hard.

5

Algorithm 3: UnboundedKnapsack(W, n, w, v)
K[0]← 0
for x = 1, · · · ,W do
K[x]← 0
for i = 1, · · · , n do
if wi <= x then
K[x]← max{K[x − wi] + vi}

end if
end for

end for
return K[W]

6

	Longest Common Subsequence
	Steps 1 and 2: Identify optimal substructure, and write a recursive formulation
	Step 3: Define an algorithm using our recursive relationship.
	Step 4: Recovering the actual LCS

	The Knapsack Problem
	The Unbounded Knapsack Problem

