Adapted From Virginia Williams' lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 24

Dynamic Programming |lI: Bellman-Ford

1 More on the Bellman-Ford Algorithm

We didn’t quite make it to the Bellman-Ford algorithm in the last lecture, so we'll re-hash
some of that again today. In the notes for the previous lecture, we introduced Bellman-
Ford in the context of Dijkstra’s algorithm. We'll see it in this lecture in a different way, so
as to naturally introduce dynamic programming. The Bellman-Ford algorithm is a dynamic
programming algorithm, and dynamic programming is a basic paradigm in algorithm design
used to solve problems by relying on intermediate solutions to smaller subproblems. The
main step for solving a dynamic programming problem is to analyze the problem’s optimal
substructure and overlapping subproblems.

The Bellman-Ford algorithm is pretty simple to state:

Algorithm 1: Bellman-Ford Algorithm(G,s)
dO[v] + oo, Vv €V
d®[s] <0
d®[v] = None, Vv € V,Vk > 0
for i from 1 — n—1 do
d®[v] « d*=D[v] for all v
for (u,v) € E do
d®[v] < min{d®[v], d*V[u] + w(u, v)}
end for
// Here we release the memory for d* 1 | we’ll never need it again
end for
return d""D[v], Vv €V

What's going on here? The value d[v] is the cost of the shortest path from s to v with
at most k edges in it. Once we realize this, a proof by induction falls right out, with the
inductive hypothesis that “d(")[v] is the cost of the shortest path from s to v with at most
k edges in it."

Runtime and Storage The runtime of the Bellman-Ford algorithm is O(mn); for n iterations,
we loop through all the edges. This is slower than Dijkstra’s algorithm. However, it is simpler
to implement, and further as we saw in Lecture Notes 23, it can handle negative edge weights.
For storage, in the pseudocode above, we keep n different arrays d*) of length n. This isn't

necessary: we only need to store two of them at a time. This is noted in the comment in
the pseudocode.

1.1 What'’s really going on here?

The thing that makes that Bellman-Ford algorithm work is that that the shortest paths of
length at most k can be computed by leveraging the shortest paths of length at most k — 1.
More specifically, we relied on the following recurrence relation between the intermediate
solutions:

d®[v] = Tei\g{d(k_l)[u] +w(u, v)}

where dX[v] is the length of the shortest path from source s to node v using at most k edges,
and w(u, v) is the weight of edge (u, v). (Above, we are assuming w(v, v) = 0).

This idea of using the intermediate solutions is similar to the divide-and-conquer paradigm.
However, a divide-and-conquer algorithm recursively computes intermediate solutions once
for each subproblem, but a dynamic programming algorithm solves the subproblems exactly
once and uses these results multiple times.

2 Dynamic Programming

The idea of dynamic programming is to have a table of solutions of subproblems and fill
it out in a particular order (e.g. left to right and top to bottom) so that the contents of
any particular table cell only depends on the contents of cells before it. For example, in the
Bellman-Ford algorithm, we filled out d*~1 before we filled out d‘®) ; and in order to fill out
d® | we just had to look back at d*~1), rather than compute anything new.

In this lecture, we will discuss dynamic programming more.

2.1 Dynamic Programming Algorithm Recipe

Here, we give a general recipe for solving problems (usually optimization problems) by dynamic
programming. Dynamic programming is a good candidate paradigm to use for problems with
the following properties:

e Optimal substructure gives a recursive formulation; and

e Overlapping subproblems give a small table, that is, we can store the precomputed
answers such that it doesn't actually take too long when evaluating a recursive function
multiple times.

What exactly do these things mean? We'll discuss them a bit more below, with the Bellman-
Ford algorithm in mind as a reference.

2.1.1 Optimal Substructure

By this property, we mean that the optimal solution to the problem is composed of optimal
solutions to smaller independent subproblems. For example, the shortest path from s to t
consists of a shortest path P from s to k (for node k on P) and a shortest path from k to
t. This allows us to write down an expression for the distance between s and t with respect
to the lengths of sub-paths:

d(s,t) = d(s, k) + d(k, t),for all k on a shortest s — t path

We used this in the Bellman-Ford algorithm when we wrote

dOu] = ryei\g{d(k_l)[v] +w(u, v)}

2.1.2 Overlapping subproblems

The goal of dynamic programming is to construct a table of entries, where early entries in
the table can be used to compute later entries. Ideally, the optimal solutions of subproblems
can be reused multiple times to compute the optimal solutions of larger problems.

For our shortest paths example, d(s, k) can used to compute d(s, t) for any t where the
shortest s — t path contains k. To save time, we can compute d(s, k) once and just look it
up each time, instead of recomputing it.

More concretely in the Bellman-Ford example, suppose that (v, u) and (v, u') are both in E.
When we go to compute d®[u], we'll need d*~D[v]. Then when we go to compute d®[u/],
we'll need d*~1[v] again. If we just set this up as a divide-and-conquer algorithm, this would
be extremely wasteful, and we'd be re-doing lots of work. By storing this value in a table and
looking it up when we need it, we are taking advantage of the fact that these subproblems
overlap.

2.1.3 Implementations

The above two properties lead to two different ways to implement dynamic programming
algorithms. In each, we will store a table 7 with optimal solutions to subproblems; the two
variants differ in how we decide to fill up the table:

1. Bottom-up: Here, we will fill in the table starting with the smallest subproblems. Then,
assuming that we have computed the optimal solution to small subproblems, we can
compute the answers for larger subproblems using our recursive optimal substructure.

2. Top-down: In this approach, we will compute the optimal solution to the entire problem
recursively. At each recursive call, we will end up looking up the answer or filling in the
table if the entry has not been computed yet.

In fact, these two methods are completely equivalent. Any dynamic programming algorithm
can be formulated as an iterative table-filling algorithm or a recursive algorithm with look-ups.

3

3 Why is it called dynamic programming?

The name doesn’'t immediately make a lot of sense. “Dynamic programming” sounds like the
type of coding that action heroes do in late-90’'s hacker movies. However, “progamming”
here refers to a program, like a plan (for example, the path you are trying to optimize), not
to programming a computer. “Dynamic” refers to the fact that we update the table over
time: this is a dynamic process. But the fact that it makes you (or at least me) think about
action movies isn't an accident. As Richard Bellman, who coined the term, writes in his
autobiography:

An interesting question is, “Where did the name, dynamic programming, come
from?" The 1950s were not good years for mathematical research. We had a
very interesting gentleman in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred of the word, research.
Im not using the term lightly; Im using it precisely. His face would suffuse, he
would turn red, and he would get violent if people used the term, research, in his
presence. You can imagine how he felt, then, about the term, mathematical. The
RAND Corporation was employed by the Air Force, and the Air Force had Wilson
as its boss, essentially. Hence, | felt | had to do something to shield Wilson and
the Air Force from the fact that | was really doing mathematics inside the RAND
Corporation. What title, what name, could | choose? In the first place, | was
interested in planning, in decision-making, in thinking. But planning, is not a good
word for various reasons. | decided therefore to use the word, “programming”. |
wanted to get across the idea that this was dynamic, this was multistage, this
was time-varying- | thought, let's kill two birds with one stone. Let's take a
word which has an absolutely precise meaning, namely dynamic, in the classical
physical sense. It also has a very interesting property as an adjective, and that is
it's impossible to use the word, dynamic, in the pejorative sense. Try thinking of
some combination which will possibly give it a pejorative meaning. It's impossible.
Thus, | thought dynamic programming was a good name. It was something not
even a Congressman could object to. So | used it as an umbrella for my activities.

	More on the Bellman-Ford Algorithm
	What's really going on here?

	Dynamic Programming
	Dynamic Programming Algorithm Recipe
	Optimal Substructure
	Overlapping subproblems
	Implementations

	Why is it called dynamic programming?

