COMP 285 (NC A&T, Spr ‘22) Lecture 2

Adapted From Virginia Williams' lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Insertion Sort, Proofs, and Formal Big-Oh

1 Introduction

In general, when analyzing an algorithm, we want to know two things.
1. Does it work?
2. How fast is it?

Today, we'll begin to see how we might formally answer these questions, through the lens of
sorting. We'll start with InsertionSort to make sure we focus not on the algorithm itself, but
on the newly introduced concepts.

2 InsertionSort

There are many ways to implement InsertionSort. You can see several C++ implementa-
tions here: https://www.onlinegdb.com/edit/7iNReAeY-n. For the purposes of lecture, we'll
stick to pseudo-code for now. Here's a possible implementation of InsertionSort.

def InsertionSort(A):
for i in range(l,len(A)):
current = A[i]
jo=i-1
while j >= 0 and A[j] > current:
Alj+1] = Alj]
j =1
A[j+1] = current

Let's ask our two questions: does this algorithm work, and does it have good performance?

2.1 Correctness of InsertionSort

Once you figure out what InsertionSort is doing (see the slides for the intuition on this),
you may think that it's “obviously” correct. However, if you didn't know what it was doing
and just got the above code, maybe this wouldn’t be so obvious. Additionally, for algorithms
that we’ll study in the future, it won't always be obvious that it works, and so we'll have to


https://www.onlinegdb.com/edit/7iNReAeY-n
https://docs.google.com/presentation/d/1dyxQVgRnZX1C1UMkoxdPFQbItSSKCWpScSNs0tl_pkI/edit?usp=sharing

prove it. To warm us up for those proofs, let's carefully go through a proof of correctness of
InsertionSort.

We'll do the proof by maintaining a loop invariant, in this case that after iteration /, then
Al: i + 1] is sorted. This is obviously true when i = 0 (because the one-element list A[: 1] is
definitely sorted) and then we'll show that for any / > 0, if it's true for / — 1, then it's true
for /. At the end of the day, we'll conclude that A[: n] (aka, the whole thing) is sorted and
we'll be done.

Formally, we will proceed by induction.
e Inductive hypothesis. After iteration j of the outer loop, A[: / + 1] is sorted.
e Base case. When | = 0, A[: 1] contains only one element, and this is sorted

e Inductive step. Suppose that the inductive hypothesis holds for i — 1, so A[: /] is sorted
after the / — 1'st iteration. We want to show that A[: i + 1] is sorted after the i'th
iteration.

Suppose that j* is the largest integer in {0, ..., i — 1} so that A[j*] < A[i]. Then the
effect of the inner loop is to turn

[A[O], A[1], ... AU, -~ Al = 1], A[/]]

into
[A[O], A[1], ..., Al AL AT + 1, ..., Al = 1]).

We claim that this latter list is sorted. This is because A[i] > A[j*], and by the inductive
hypothesis, we have A[j*] > A[j] for all j < j*, and so A[/] is larger than everything that
is positioned before it. Similarly, by the choice of j* we have A[i] < A[j* + 1] < A[J] for
all j > j*+ 1, so A[/] is smaller than everything that comes after it. Thus, A[/] is in
the right place. All of the other elements were already in the right place, so this proves
the claim.

Thus, after the /'th iteration completes, A[: i + 1] is sorted, and this establishes the
inductive hypothesis for I.

e Conclusion. By induction, we conclude that the inductive hypothesis holds for all
i < n—1. In particular, this implies that after the end of the n — 1'st iteration (after
the algorithm ends) A[: n] is sorted. Since A[: n] is the whole list, this means the whose
list is sorted when the algorithm terminates, which is what we were trying to show.

The above proof was maybe a bit pedantic: we used a lot of words to prove something that
may have been pretty obvious. However, it's important to understand the structure of this
argument, because we'll use it a lot, sometimes for more complicated algorithms.



2.2 Running time of InsertionSort

The running time of InsertionSort is about n? operations. To be a bit more precise, at
iteration /, the algorithm may have to look through and move / elements, so that's about
270 = @ operations. We're not going to stress the precise operation count, because
we'll argue that the end of the lecture that we don’t care too much about it. The main
question that we have, is, can we do asymptotically better than n®> 27 That is, can we come
up with an algorithm that sorts an arbitrary list of n integers in time that scales less than n??

For example, like n*®, or nlog(n), or even n?

You should recall from COMP 280 that a much better algorithm exists, which is called
MergeSort and which has running time O(nlog(n)).

3 Guiding Principles of Algorithm Design and Analysis

After going through the algorithm and analysis, it is natural to wonder if we've been too sloppy.
In particular, note that the algorithm never “looks at” the input. For instance, what if we
received the sequence of numbers [1,2,3,5,4,6,7,8]? Clearly, there is a “sorting algorithm”
for this sequence that only takes a few operations, but MergeSort runs through all logn+1
levels of recursion anyway. Would it be better to try to design our algorithms with this in
mind? Additionally, in our analysis, we've given a very loose upper bound on the time required
and dropped a number of constant factors and lower order terms. Is this a problem? In what
follows, we'll argue that these are actually features, not bugs, in the design and analysis of
the algorithm.

3.1 Worst-Case Analysis

One guiding principle we'll use throughout the class is that of Worst-Case Analysis. In
particular, this means that we want any statement we make about our algorithms to hold
for every possible input. Stated differently, we can think about playing a game against an
adversary, who wants to maximize our running time (make it as bad as possible). We get
to specify an algorithm and state a running time 7 (n); the adversary then chooses an input.
We win the game if even in the worst case, whatever input the adversary chooses (of size n),
our algorithm runs in at most T (n) time.

Note that because our algorithm made no assumptions about the input, then our running
time bound will hold for every possible input. This is a very strong, robust guarantee !,

HIn the case where you have significant domain knowledge about which inputs are likely, you may choose to
design an algorithm that works well in expectation on these inputs (this is frequently referred to as Average-Case
Analysis). This type of analysis of ten much more tricky, and requires strong assumptions on the input



3.2 Asymptotic Analysis

Throughout our arguments about running time, we combined constants and gave very loose
upper bounds (like being okay with a naive implementation of our pseudocode, or with this
very wasteful upper bound 11m on the work done at a subproblem). Why did we choose to
do this? First, it makes the math much easier. But does it come at the cost of getting the
“right" answer? Would we get a more predictive result if we threw all these exact expressions
back into the analysis? From the perspective of an algorithm designer, the answer is to
both of these questions is a resounding “No”. As an algorithm designer, we want to come
up with results that are broadly applicable, whose truth does not depend on features of a
specific programming language or machine architecture. The constants that we've dropped
will depend greatly on the language and machine on which you're working. For the same
reason we use pseudocode instead of writing our algorithms in C++, trying to quantify the
exact running time of an algorithm would be inappropriately specific. This is not to say that
constant factors never matter in applications (e.g. | would be rather upset if my web browser
ran 7 times slower than it does now) but worrying about these factors is not the goal of this
class. In this class, our goal will be to argue about which strategies for solving problems are
wise and why.

In particular, we will focus on Asymptotic Analysis. This type of analysis focuses on the
running time of your algorithm as your input size gets very large (i.e. n — +00). This
framework is motivated by the fact that if we need to solve a small problem, it doesn’t cost
that much to solve it by brute-force. If we want to solve a large problem, we may need to
be much more creative in order for the problem to run efficiently. From this perspective, it
should be very clear that 11n(log n + 1) is much better than n?/2. (If you are unconvinced,
try plugging in some values for n.)

Intuitively, we'll say that an algorithm is “fast” when the running time grows “slowly” with the
input size. In this class, we want to think of growing “slowly" as growing as close to linear
as possible. Based on this this intuitive notion, we can come up with a formal system for
analyzing how quickly the running time of an algorithm grows with its input size.

3.3 Asymptotic Notation

To talk about the running time of algorithms, we will use the following notation. T (n) denotes
the runtime of an algorithm on input of size n.

3.3.1 “Big-Oh” Notation:

Intuitively, Big-Oh notation gives an upper bound on a function. We say T (n) is O(f(n))
when as n gets big, f(n) grows at least as quickly as T (n). Formally, we say

T(n)=0(f(n)) < dc,ng >0stVn>ny,0<T(n)<c-f(n)



3.3.2 “Big-Omega” Notation:

Intuitively, Big-Omega notation gives a lower bound on a function. We say T (n) is Q(f(n))
when as n gets big, f(n) grows at least as slowly as T(n). Formally, we say

T(n)=0(f(n)) < dc,ng>0stVn>ng,0<c-f(n)<T(n)

3.3.3 “Big-Theta” Notation:

Intuitively, Big-Theta notation gives both a lower and upper bound on a function. We say
T(n)is ©(f(n)) if and only if T(n) = O(f(n)) and T(n) = Q(f(n)).

T(n)=0(f(n)) < dc1, 6,00 >0stV¥n>ny,0< cif(n) <T(n) < cf(n)

We will cover each of these definition in more detail next lecture.



	Introduction
	InsertionSort
	Correctness of InsertionSort
	Running time of InsertionSort

	Guiding Principles of Algorithm Design and Analysis
	Worst-Case Analysis
	Asymptotic Analysis
	Asymptotic Notation
	``Big-Oh'' Notation:
	``Big-Omega'' Notation:
	``Big-Theta'' Notation:



