
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 19

SCCs in Linear Time and and Single-Source Shortest Path
on Weighted Graphs

1 Why our algorithm works

Figure 1: The strongly connected components of a directed graph

1.1 The Acyclic Meta-Graph of SCCs

First, observe that the strongly connected components of a directed graph form an acyclic
“meta-graph”, where the meta-nodes correspond to the SCCs C1, · · · , Ck , and there is an
arc Ch → C` with h 6= ` if and only if there is at least one arc (i , j) in G with i ∈ Ch and
j ∈ C`. This directed graph must be acyclic: since within a SCC you can get from anywhere
to anywhere else on a directed path, in a purported directed cycle of SCCs you can get from
every node in a constituent SCC to every other node of every other SCC in the cycle. Thus
the purported cycle of SCCs is actually just a single SCC. Summarizing, every directed graph
has a useful “two-tier” structure: zooming out, one sees a DAG (Directed Acyclic Graph) on
the SCCs of the graph; zooming in on a particular SCC exposes its finer-grained structure.
For example, the meta-graphs corresponding to the directed graphs in Figs. 1 and 2 are
shown in Fig. 3.

1



Figure 2: Example execution of the strongly connected components algorithm. Nodes are
labeled by their finishing times and their leaders are shown.

Figure 3: The DAGs of the SCCs of the graphs in Figs. 1 and 2.

2 Proof of Correctness

2.1 The Key Lemma

Correctness of the algorithm hinges on the following key lemma.

Lemma 1. Consider two “adjacent” strongly connected components of a graph G: compo-
nents C1 and C2 such that there is an arc (i , j) of G with i ∈ C1 and j ∈ C2. Let f (v) denote
the finishing time of vertex v in some execution of DFS-Loop on the reversed graph Grev.
Then

max
v∈C1

f (v) < max
v∈C2

f (v)

Proof. Consider two adjacent SCCs C1 and C2, as they appear in the reversed graph Grev -
where there is an arc (j, i), with j ∈ C2 and i ∈ C1 (Fig. 4). Because the equivalence relation

2



Figure 4: Proof of key lemma. Vertex v is the first inC1 ∪ C2 visited during the execution of
DFS-Loop on Grev. On the left, all f -values in C1 smaller than in C2. On the right: v has
the largest f -value in C1 ∪ C2.

defining the SCCs is symmetric, G and Grev have the same SCCs; thus C1 and C2 are also
SCCs of Grev. Let v denote the first vertex of C1 ∪ C2 visited by DFS-Loop in Grev. There
are now two cases.

First, suppose that v ∈ C1 (Fig. 4). Since there is no non-trivial cycle of SCCs (Section 4.1),
there is no directed path from v to C2 in Grev. Since DFS discovers everything reachable and
nothing more, it will finish exploring all vertices in C1 without reaching any vertices in C2.
Thus, every finishing time in C1 will be smaller that every finishing time in C2, and this is even
stronger than the assertion of the lemma. (Cf., the left and middle SCCs in Fig. 2.) Second,
suppose that v ∈ C2 (Fig. 4). Since DFS discovers everything reachable and nothing more,
the call to DFS at v will finish exploring all of the vertices in C1 ∪ C2 before ending. Thus,
the finishing time of v is the largest amongst vertices in C1 ∪ C2, and in particular is larger
than all finishing times in C1. (Cf., the middle and right SCCs in Fig. 2.)

This completes the proof.

2.2 The Final Argument

The Key Lemma says that traversing an arc from one SCC to another (in the original,
unreversed graph) strictly increases the maximum f -value of the current SCC. For example,
if fi denotes the largest f -value of a vertex in Ci in Fig. 3, then we must have f1 < f2, f3 < f4.
Intuitively, when DFS-Loop is invoked on G, processing vertices in decreasing order of finishing
times, the successive calls to DFS peel off the SCCs of the graph one at a time, like layers
of an onion.

We now formally prove correctness of our algorithm for computing strongly connected com-
ponents. Consider the execution of DFS-Loop on G. We claim that whenever DFS is called
on a vertex v , the vertices explored - and assigned a common leader - by this call are precisely
those in v ’s SCC in G. Since DFS-Loop eventually explores every vertex, this claim implies

3



that the SCCs of G are precisely the groups of vertices that are assigned a common leader.

We proceed by induction. Let S denote the vertices already explored by previous calls to DFS
(initially empty). Inductively, the set S is the union of zero or more SCCs of G. Suppose DFS
is called on a vertex v and let C denote v ’s SCC in G. Since the SCCs of a graph are disjoint,
S is the union of SCCs of G, and v /∈ S, no vertices of C lie in S. Thus, this call to DFS will
explore, at the least, all vertices of C. By the Key Lemma, every outgoing arc (i , j) from C

leads to some SCC C ′ that contains a vertex w with a finishing time larger than f (v). Since
vertices are processed in decreasing order of finishing time, w has already been explored and
belongs to S; since S is the union of SCCs, it must contain all of C ′ . Summarizing, every
outgoing arc from C leads directly to a vertex that has already been explored. Thus this call
to DFS explores the vertices of C and nothing else. This completes the inductive step and
the proof of correctness.

3 Dijkstra’s Algorithm

Now we will solve the single source shortest paths problem in graphs with nonnengative
weights using Dijkstra’s algorithm. The key idea, that Dijkstra will maintain as an invariant,
is that ∀tinV , the algorithm computes an estimate d [t] of the distance of t from the source
such that:

1. At any point in time, d [t] ≥ d(s, t), and

2. when t is finished, d [t] = d(s, t).

Algorithm 1: Dijkstra(G = (V, E), S)
∀t ∈ V, d [t]←∞ // set initial distance estimates
d [s]← 0
F ← {v | ∀v ∈ V } // F is the set of nodes that are yet to achieve final
distances estimates
D ← ∅ // D will be the set of nodes that have achieved final distance
estimates
while F 6= ∅ do
x ← elements in F with minimum distance estimate
for (x, y) ∈ E do
d [y ]← min{d [y ], d [x ] + w(x, y)} // "relax" the estimate of y
// to maintain paths: if d [y ] changes, then π(y)← x

end for
F ← F \ {x}
D ← D ∪ {x}

end while

Claim 1 (For every u, at any point of time d(u) ≥ d(s, u).). A formal proof of this claim

4



proceeds by induction. In particular, one shows that at any point in time, if d [u] <∞, then
d [u] is the weight of some path from s to t. Thus at any point d [u] is at least the weight of
the shortest path, and hence d [u] ≥ d(s, u). As a base case, we know that d [s] = 0 = d(s, s)
and all other distance estimates are +∞, so we know that the claim holds initially. Now,
when d [u] is changed to d [x ] + w(x, u) then (by the induction hypothesis) there is a path
from s to x of weight d [x ] and an edge (x, u) of weight w(x, u). This means there is a path
from s to u of weight d [u] = d [x ] + w(x, u). This implies that d [u] is at least the weight of
the shortest path = d(s, u), and the induction argument is complete

Claim 2 (When node x is placed in D, d(x) = d(s, x)). Notice that proving the above claim is
sufficient to prove the correctness of the algorithm since d [x ] is never changed again after x is
added to D: the only way it could be changed is if for some node y ∈ F , d [y ]+w(y , x) < d [x ]

but this can’t happen since d [x ] ≤ d [y ] and w(y , x) ≥ 0 (all edge weights are nonnegative).
The assertion d [x ] ≤ d [y ] for all y ∈ F stays true at all points after x is inserted into D:
assume for contradiction that at some point for some y ∈ F we get d [y ] < d [x ] and let y be
the first such y . Bef ored [y ] was updated d [y ′] ≥ d [x ] for all y ′ ∈ F . But then when d [y ]
was changed, it was due to some neighbor y ′ of y in F , butd [y ′] ≥ d [x ] and all weights are
nonnegative, so we get a contradiction

We prove this claim by induction on the order of placement of nodes into D. For the base
case, s is placed into D where d [s] = d(s, s) = 0, so initially, the claim holds.

For the inductive step, we assume that for all nodes y currently in D, d [y ] = d(s, y). Let x
be the node that currently has the minimum distance estimate in F (this is the node about
to be moved from F to D). We will show that d [x ] = d(s, x) and this will complete the
induction. Let p be a shortest path from s to x . Suppose z is the node on p closest to x
for which d [z ] = d(s, z). We know z exists since there is at least one such node, namely s,
where d [s] = d(s, s). By the choice of z , for every node y on p between z (not inclusive) to
x (inclusive), d [y ] > d(s, y). Consider the following options for z .

1. If z = x , then d [x ] = d(s, x) and we are done.

2. Suppose z 6= x . Then there is a node z ′ after z on p. (Here it is possible that z ′ = x .)
We know that d [z ] = d(s, z) ≤ d(s, x) ≤ d [x ]. The first ≤ inequality holds because
subpaths of shortest paths are shortest paths as well, so that the prefix of p from s

to z has weight d(s, z). In addition, the weights on edges are non-negative, so that
the portion of p from z to x has a nonnegative weight, and so d(s, z) ≤ d(s, x).
The subsequent ≤ holds by Claim 1. We know that if d [z ] = d [x ] all of the previous
inequalities are equalities and d [x ] = d(s, x) and the claim holds.

Finally, towards a contradiction, suppose d [z ] < d [x ]. By the choice of x ∈ F we
know d [x ] is the minimum distance estimate that was in F . Thus, since d [z ] < d [x ],
we know z /∈ F and must be in D, the finished set. This means the edges out of z ,
and in particular (z, z ′), were already relaxed by our algorithm. But this means that
d [z ′] ≤ d(s, z) + w(z, z ′) = d(s, z ′), because z is on the shortest path from s to z ′ ,

5



and the distance estimate of z ′ must be correct. However, this contradicts z being the
closest node on p to x meeting the criteriad [z ] = d(s, z). Thus, our initial assumption
that d [z ] < d [x ] must be false and d [x ] must equal d(s, x).

6


	Why our algorithm works
	The Acyclic Meta-Graph of SCCs

	Proof of Correctness
	The Key Lemma
	The Final Argument

	Dijkstra's Algorithm

