
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 17

Applications of Breadth-First Search

1 Breadth-First Search

In depth first search, we search “deeper” in the graph whenever possible, exploring edges
out of the most recently discovered node that still has unexplored edges leaving it. Breadth
first search (BFS) instead expands the frontier between discovered and undiscovered nodes
uniformly across the breadth of the frontier, discovering all nodes at a distance k from the
source node before nodes at distance k + 1. BFS(s) computes for every node v ∈ G the
distance from s to v in G. d(u, v) is the length of the shortest path from u to v . A simple
property of unweighted graphs is as follows: let P be a shortest u → v path and let x be the
node before v on P . Then d(u, v) = d(u, x) + 1.

BFS(s) computes sets Li , the set of nodes at distance i from s, as seen in the diagram below.

1.1 Runtime Analysis

We will now look at the runtime for our BFS algorithm (Line 5) for a graph with n nodes
and m edges. All of the initialization above the first for loop runs in O(n) time. Visiting each

1

Algorithm 1: BFS(s)
Set vis[v] ← false for all v
Set Li ← ∅ for i ∈ {1, · · · , n − 1}
L0 ← {s} vis[s] ← true
for i = 0, · · · , n − 1 do

if Li = ∅ then
Exit

end if
while Li 6= ∅ do
u ← Li .pop()
// In the loop below, replace N with Nout for a direct graph
for x ∈ N(u) do

if v is[x] = f alse then
v is[x]← true
Li+1.insert(x)
p(x)← u

end if
end for

end while
end for

node within the while loop takes O(1) time per node visited. Everything inside the inner for
loop takes O(1) time per edge scanned, which we can simplify to a runtime of O(m) time
overall for the entire inner for loop. Overall, we see that our runtime is O(# nodes visited +
edges scanned) = O(m + n).

1.2 Correctness

We will now show that BFS correctly computes the shortest path between the source node
and all other nodes in the graph. Recall that Li is the set of nodes that BFS calculates to
be distance i from the source node.

Proposition 1. For all i , Li = {x | d(s, x) = i}.

Proof. We will prove this by (strong) induction on i .

Base case: i = 0, and L0 = {s}.

Induction hypothesis: Suppose that Lj = {x | d(s, x) = j} for every j ≤ i (induction
hypothesis for i).

Inductive step: We will show two things: (1) if y was added to Li+1, then d(s, y) = i + 1,
and (2) if d(s, y) = i+1, then y is added to Li+1. After proving (1) and (2) we can conclude
that Li+1 = {y | d(s, y) = i + 1} and complete the induction.

2

Let’s prove (1). First, if y is added to Li+1, it was added by traversing an edge (x, y) where
x ∈ Li , so that there is a path from s to y taking the shortest path from s to x followed
by the edge (x, y), and so d(s, y) ≤ d(s, x) + 1. Since x ∈ Li , by the induction hypothesis,
d(s, x) = i , so that d(s, y) ≤ i + 1. However, since y ∈ Lj for any j ≤ i , by the induction
hypothesis, d(s, y) > i , and so d(s, y) = i + 1.

Let’s prove (2). If d(s, y) = i + 1, then by the inductive hypothesis y ∈ Lj for j ≤ i . Let x
be the node before y on the s → y shortest path P . As d(s, y) = i +1 and the portion of P
from s to x is a shortest path and has length exactly i . Thus, by the induction hypothesis,
x ∈ Li . Thus, when x was scanned, edge (x, y) was scanned as well. If y had not been
visited when (x, y) was scanned, then y will be added to Li+1. Hence assume that y was
visited before (x, y) was scanned. However, since y ∈ Lj for any j ≤ i , y must have been
visited by scanning another edge out of a node from Li , and hence again y is added to Li+1.

1.3 BFS versus DFS

If you simplify BFS and DFS to the basics, ignoring all timestamps and levels that we would
usually create, BFS and DFS have a very similar structure. Breadth first search explores
the nodes closest and then moves outwards, so we can use a queue (first in first out data
structure) to put new nodes at the end of the list and pull the oldest/nearest nodes from the
top of the list. Depth first search goes as far down a path as it can before coming back to
explore other options, so we can use a stack (last in first out data structure) which pushes
new nodes on the top and also pulls the newest nodes from the top. See the pseudocode
below for more detail.

Algorithm 2: DFS(s): s is the source node
T ← empty stack Push s onto T
while T is not empty do
u ← pop from top of T
Push all unvisited neighbors of u on top of stack T

end while

Algorithm 3: BFS(s): s is the source node
T ← empty queue Push s onto T
while T is not empty do
u ← pop from front of T
Push all unvisited neighbors of u on back of queue T

end while

3

	Breadth-First Search
	Runtime Analysis
	Correctness
	BFS versus DFS

