
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 14

Universal Hash Families

1 Hashing with a completely random hash function

What does it mean for h to be random? One possibility is that h is chosen uniformly and at
random from amongst the set of all hash functions h : U → {1, 2, · · · , n}. In fact picking
such a hash function is not really practical. Note that there are n|U| possible hash functions.
Representing just one of these hash functions requires log(n|U|) = |U| log n bits. In fact, this
means we need to write down h(x) for every x ∈ U in order to represent h. That’s a lot of
storage space! Much more than the size of the set we are trying to store in the hash table.
One could optimize this somewhat by only recording h(x) for all keys x seen so far (and
generating h(x) randomly on the fly when a new x is encountered), but this is impractical
too. How would we check if a particular key x has already been encountered? Looks like
we would need a hash table for that. But wait, isn’t that what we set out to implement?
Overall, it is clear that picking a completely random hash function is completely impractical.

Despite this, we will analyze hashing assuming that we have a completely random hash
function and then explain how this assumption can be replaced by something that is practical.

Expected cost of hash table operations with random hash functions

What is the expected cost of performing any of the operations Insert, Lookup, or Delete with
a random hash function? Suppose that the keys currently in the hash table are x1, · · · , xn.
Consider an operation involving key xi . The cost of the operation is linear in the size of the
hash bucket that xi maps to. Let X be the size of the hash bucket that xi maps to. X is a
random variable and

E[X] =

n∑
j=1

P[h(xi) = h(xj)]

= 1 +
∑
j 6=i

P[h(xi) = h(xj)] (We are guaranteed to collide with ourselves)

= 1 +
n − 1

n
≤ 2

Here the last step follows from the fact that P[h(xi) = h(xj)] = 1/n when h is random. Note
that each key appears in the hash table at most once.

Thus the expected cost of any hashing operation is a constant.
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1.1 Universal Hash Functions & Intro to Graphs

Can we retain the expected cost guarantee of the previous section with a much simpler
(i.e.,practical) family of hash functions? In the analysis of the previous section, the only
fact we used about random hash functions was that P[h(xi) = h(xj)] = 1/n. Is it possible
toconstruct a small, practical subset of hash functions with this property?

Thinking along these lines, in 1978, Carter and Wegman introduced the notion of universal
hashing: Consider a family F of hash functions from Uto{1, 2, · · · , n}. We say that F
isuniversal if, for every xi 6= xj , for an h chosen randomly from F , P[h(xi) = h(xj)] ≤ 1/n.

Clearly the analysis of the previous section shows that for any universal family, the constant
expected running time guarantee applies. The family of all hash functions is universal. Is
there a simpler universal family?

2 A universal family of hash functions

Suppose that the elements of the U are encoded as non-negative integers in the range
0, · · · , |U| − 1. Pick a prime p ≥ |U|. For a, b ∈ {0, · · · p − 1}, consider the family of
hash functions

ha,b(x) = (ax + b mod p) mod n

where a ∈ {1, · · · , p − 1} and b ∈ 0, 1, · · · , p − 1.

Proposition 1. This family of hash functions F is universal.

In order to prove this statement, first, let’s count the number of hash functions in this family F
. We have p−1 choices for a, and p choices for b, so |F | = p(p−1). In order to prove that F
is universal, we need to show that for an h chosen randomly from F , P[h(xi) = h(xj)] ≤ 1/n.
Since there are p(p − 1) hash functions in F , this is equivalent to showing that the number
of hash functions in F that map xi and xj to the same output is less than or equal to p(p−1)

n

. To show that this is true, first consider how ha,b behaves without the mod n. Call these
functions fa,b:

fa,b(x) = ax + b mod p

The fa,b have the following useful property:

Proposition 2. For a given x1, x2, y1, y2 ∈ {0, · · · , p − 1} such that x1 6= x2 there exists only
one function fa,b such that fa,b(x1) = y1, and fa,b(x2) = y2

Proof. Solve the above two equations for a and b:

ax1 + b ≡ y1( mod p)

ax2 + b ≡ y2( mod p)
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By subtracting the two equations, we get:

a(x1 − x2) ≡ y1 − y2( mod 6)

Since p is prime and x1 6= x2, the above equation has only one solution for a ∈ {0, · · · , p−1}.
Then

b ≡ y1 − ax1( mod p)

So we have found the unique a and b such that fa,b(x1) = y1 and fa,b(x2) = y2.

In the above proof, note that a = 0 only when y1 = y2 = b. This is why we restrict a 6= 0,
we don’t want the hash function mapping all elements to the same value b. Now, we have
shown that for a given x1, x2, for each selection of y1, y2 with y1 6= y2, there is exactly one
function fa,b that maps x1 to y1 and x2 to y2. So, in order to find out how many functions
ha,b map x1 and x2 to the same value mod n, we just need to count the number of pairs
(y1, y2) where y1 6= y2 and y1 ≡ y2(modn). There are p possible selections of y1 for this pair,
and then ≤ (p−1)/n of the possibilities for y2 will be equal to y1 mod n. (Convince yourself
that this is true.) This gives a total of p(p−1)

n
functions ha,b that map x1 and x2 tothe same

element. So then

P[ha,b(x1) ≤ ha,b(x2)]

≤
p(p − 1)/n

|F |

=
p(p − 1)

p(p − 1)(n)

=
1

n

which means the family F of the ha,b is universal, as desired.

Wrapping up the discussion on hashing, if we pick a random hash function from this family,
then the expected cost of any hashing operation is constant. Note that picking a random
hash function from the family simply involves picking a, b – significantly simpler than picking
a completely random hash function.

3 Balls and Bins

A useful abstraction in thinking about hashing with random hash functions is the following
experiment: Throw m balls randomly into n bins. (The connection to hashing should be
clear: the balls represent the keys and the bins represent the hash buckets.) The balls into
bins experiment arises in several other problems as well, e.g., analysis of load balancing. In
the context of hashing, the following questions arise about the balls and bins experiment:
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• How large does m have to be so that with probability greater than 1/2, we have (at
least) two balls in the same bin? This tells us how large our hash table needs to be to
avoid any collisions. We will explore this at the end of these notes.

• Suppose m = n; what is the maximum number of balls that fall into a bin? This tells
us the size of the largest bucket in the hash table when the number of keys is equal to
the number of buckets in the table. We might explore this in the next homework.

No Collisions

The first question is related to the so called birthday paradox: Suppose you have 23 people
in a room. Then (somewhat surprisingly) the probability that there exists some pair with
the same birthday is greater than 1/2! (This assumes that birthdays are independent and
randomly distributed.) 23 seems like an awfully small number to get a pair with the same
birthday. There are 365 days in a year! How do we explain this? Consider throwing m balls
into n bins. The expected number of pairs that fall into the same bucket is m(m − 1)/2n.
(This follows from linearity of expectation. Note that the probability that a fixed pair falls
into the same bucket is 1/n.) Thus the probability that there is a collision is upper bounded
by the expected number of collisions which is m(m − 1)/2n. (Convince yourself that this is
true.) On the other hand, we can also show that the probability that all m balls fall into
distinct bins is at most e−m(m−1)/2n:

Proof

P[no collisions] =

m−1∏
i=1

(
1−

i

n

)
Now we use the fact that (1− x) ≤ e−x :(

1−
i

n

)
≤ e−i/n

So

P[no collision] ≤
m−1∏
i=1

e i/n

P[no collision] ≤ e
∑m−1
i=1 −i/n

P[no collision] ≤ e−m(m−1)/(2n)

For m about
√

(2n ln 2)n ≈ 1.18
√
n this probability is less than 1/2, i.e., the probability of a

collision is greater than 1/2.

This is a useful design principle to keep in mind: If we want to design a hash table with no
collisions, then the size of the hash table should be larger than the square of the number
of elements we need to store in it. For our purposes in this note, insisting on no collisions
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means that the number of elements in the hash table can only be a small fraction of the hash
tablesize which is quite wasteful.

The birthday problem calculation is useful in other contexts. Here is an application: Suppose
we assign random b-bit IDs to m users. How large does b have to be to ensure that all users
have distinct IDs with probability 1 − δ. Here δ > 0 is a given error tolerance. Assigning
b-bit IDs is identical to mapping to n = 2b buckets. The birthday problem calculation shows
us that the probability of a collision is at most m2/2n = m2/2b+1. We should set b large
enough such that this bound is at most δ. Thus b should be at least 2 logm− 1 + log(1/δ).

4 Intro to Graphs

A graph is a set of vertices and edges connecting those vertices. Formally, we define a
graph G as G = (V, E) where E ⊆ V × V . For ease of analysis, the variables n and m
typically stand for the number of vertices and edges, respectively. Graphs can come in two
flavors, directed or undirected. If a graph is undirected, it must satisfy the property that
(i , j) ∈ E ⇐⇒ (j, i) ∈ E (i.e., all edges are bidirectional). In undirected graphs, m ≤ n(n−1)

2

. In directed graphs, m ≤ n(n − 1). Thus, m = O(n2) and logm = O(log n). A connected
graph is a graph in which for any two nodes u and v there exists a path from u to v .
For an undirected connected graph m ≥ n − 1. A sparse graph is a graph with few edges
(for example, Θ(n) edges) while a dense graph is a graph with many edges (for example,
m = Θ(n2)).
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