
Adapted From Virginia Williams’ lecture notes.

COMP 285 (NC A&T, Spr ‘22) Lecture 11

Radix Sort and Wrap-Up

Today, we will continue our discussion of non-comparison-based sorts, such as Counting Sort
and Radix Sort. We will wrap-up our discussion by providing motivation for the study of
specialized data structures, such as balanced binary trees.

1 Counting Sort

Recall that our sorting lower bounds applied to the class of algorithms that can only evaluate
the values being sorted via comparison queries, namely via asking whether a given element is
greater than, less than, or equal to some other element. For such algorithms, it’s been proven
that any correct algorithm (even a randomized one!) will require Ω(n log n) such queries on
some input. As with any lower-bound that we prove in a restricted model, it is fruitful to ask
“is it possible to have an algorithm that does not fall in this class, and hence is not subject
to the lowerbound?” For sorting, the answer is “yes”.

We start by looking at a very simple non-comparison-based sorting algorithm called Counting
Sort. Since it is not comparison-based, it is not restricted by the Ω(n log n) lower bound for
sorting. For a given input of n objects, each with a corresponding key (or value) in the range
{0, 1, · · · , r − 1}, Counting Sort will sort the objects by their keys:

1. Create an array A of r buckets where each bucket contains a linked list.

2. For each element in the input array with key k , concatenate the element to the end of
the linked list A[k ].

3. Concatenate all the linked lists: A[0], · · · , A[r − 1].

The algorithm correctly sorts the n elements by their keys because the elements are placed
into buckets by key where bucket i (containing elements with key = i) will come before
bucket j (containing elements with key = j) in A for i < j . Therefore, when the algorithm
concatenates the buckets, all elements with key = i will come before elements with key =
j . The worst case run time of Counting sort is O(n + r) since it performs O(1) passes over
the n input elements and O(1) passes over the r buckets of A. This is great if the size of
the range r is small, but we pay dearly in the running time (and space) if r is large. The
algorithm we discuss in the next section builds on Counting Sort and fixes this issue (that
Counting Sort behaves poorly if the range of values r is very large).

An important property (which we will use in the next section) is that the algorithm described
above is stable: If two input elements x, y have the same key, and x appears before y in the
input array, x will appear before y in the output.
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2 Radix Sort

Radix Sort is another non-comparison-based sorting algorithm that will use Counting Sort as
a subroutine. Assuming that the input array contains d-digit numbers where each digit ranges
from 0 to r − 1, Radix Sort sorts the array digit-by-digit (or field-by-field for non-numerical
inputs). The algorithm works on input array A as follows:

1. For j = 1, · · · , d :

2. Apply Counting Sort to A using the jth digit as the key.

Note that we refer to the least significant digit as the first digit. Hence, the algorithm calls
Counting Sort first using the least significant digit as the key, then again using the second
least significant digit, until the most significant digit.

We will show that Radix Sort correctly sorts an input list of n numbers via induction on the
iterations of the loop.

Inductive Hypothesis: At the end of the j th iteration, the elements in A are sorted when
considering only the j least significant digits of each element.

Base case: (j = 1) Radix Sort correctly sorts the numbers by the first digit as it uses
Counting Sort to sort the numbers using the least significant digit as a key. (Note: we could
have used j = 0as the base case as well).

/Inductive case: We will prove that, if the inductive hypothesis for j = k −1 is true, then the
inductive hypothesis for j = k is true as well. By the inductive hypothesis for j = k − 1, by
the end of iteration k − 1, the input numbers have been sorted by the k − 1 least significant
digits. After we run Counting Sort on the elements using digit k as the key, the numbers are
sorted by their j th digit. Since Counting Sort is stable, the elements in each bucket keep their
original order, and by the induction hypothesis, they are ordered by their k−1 least significant
digits. Since the elements are ordered first by their k th digit, and then by their k − 1

least significant digits, we conclude that they are ordered by their k least significant digits.

To provide more detail for the bolded text in that last sentence, we could consider any two
numbers x and y in the input and separately consider two cases as we did in lecture: case (i)
where x and y have different kth least significant digits, and case (ii) where x and y have
identical kth least significant digits. In both cases, we could establish that, in the output,x
and y are ordered by their least k significant digits. Since this is true for every pair of numbers
x and y in the input, this means that the output of this iteration is correctly sorted by the k
least significant digits.

By induction, the inductive hypothesis is true for all j ∈ {1, · · · , d}. Applying the inductive
hypothesis for j = d , we conclude that at the end of iteration d , the numbers are in sorted
order (since the input consists of d-digit numbers). In other words, Radix Sort correctly sorts
the input.

The worst case running time of Radix Sort is O(d(n+ r)) since we are calling Counting Sort
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on n elements with r possible keys once for each digit in the input numbers. If r = O(n) and
d = O(1), then this takes O(n) time.

As we did in lecture, we could consider varying the base r in which we write our numbers
and running radix sort (with the Counting Sort in the inner loop using r buckets). Now the
maximum number of digits is a function of the maximum size of the numbers in the input
and our choice of base r . If we have an input consisting of n numbers of value at most M,
then the number of digits d = blogr(M)c+ 1. (verify this yourself!) Thus the running time
for Radix Sort with base r is O(d(n + r)) which is O((blogr(M)c+ 1) · (n + r)).

How should we choose r? One reasonable choice is r = n to balance the two values n and r in
the term (n+ r) in the expression for the running time. For this choice of r, the running time
for Radix sort is O(n · (blogr(M)c+ 1)). (Why didn’t we drop the +1 term in the expression
for the asymptotic running time?) Note that we might make a different choice of r if it was
also important to optimize the space required to run Radix Sort.

So the running time of Radix Sort (in terms of n) depends on how large the numbers in the
input are as a function of n. If the upper bound M ≤ nc for some constant c , then the
running time is O(n). In this regime, Radix Sort beats MergeSort and Quicksort. On the
other hand, if M = 2n , then the running time is O(n2/ log n). In this regime, we would not
use Radix Sort.
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