
COMP 285 (NC A&T, Spr ‘22) Lecture 1

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Karatsuba’s Algorithm & Pseudocode Practice

1 Karatsuba Integer Multiplication Cont.

1.1 Divide and Conquer

The “Divide and Conquer” algorithm design paradigm is a very useful and widely applicable
technique. We will see a variety of problems to which it can be fruitfully applied. The high-
level idea is just to split a given problem up into smaller pieces, and the solve the smaller
pieces, often recursively.

How can we apply Divide and Conquer to integer multiplication? Lets try splitting up the
numbers. For example, if we were multiplying 1234 × 5678, we could express this as ((12 ·
100) + 34) · ((56 · 100) + 78). In general, if we are multiplying two n-digit numbers x and y ,
we can write x = 10n/2 · a + b and y = 10n/2 · c + d . So

x · y = (10n/2a + b) · (10n/2c + d) = 10nac + 10n/2(ad + bc) + bd.

Now we can split this problem into four subproblems, where each subproblem is similar to the
original problem, but with half the digits. This gives rise to a recursive algorithm.

Interestingly enough, this algorithm isn’t actually better! Intuitively this is because if we
expand the recursion, we still have to multiply every pair of digits, just like we did before. But
in order to prove this formally, we need to formally define the runtime of an algorithm, and
prove that these algorithms are not very different in runtime.

1.2 Recurrence Relation

We can analyze the runtime of the algorithm as follows.

Let T (n) be the runtime of the algorithm, given an input of size n (two n-digit numbers).
Because we are breaking up the problem into four subproblems with half the digits, plus some
addition with linear cost, we have the equation T (n) = 4T (n/2)+O(n). (Don’t worry if you
haven’t seen big-O notation before; we’ll go over this in detail in the coming lectures.)

Although in general you should pay attention to the O(n) term, today we will just ignore
it because the term doesn’t matter in this case.

1

By repeatedly breaking up the problem into subproblems, we find that

T (n) = 4T (n/2) = 16T (n/4) = · · · = 22tT
(n
2t

)
= n2T (1)

Since T (1) is the time it takes to multiply two digits, we see that the above suggestion does
not reduce the number of 1-digit operations.

Note: In the lecture slides, we’ll consider a slightly different argument, which analyzes a
recursion tree. It’s a good exercise to understand both arguments! Again, we’ll discuss both
techniques more in coming lectures.

1.3 Divide and conquer (take 2)

Karatsuba found a better algorithm (in 1960, published in 1962) by noticing that we only need
the sum of ad and bc , not their actual values. So he improved the algorithm by computing
ac and bd as before, and computing (a+b) · (c+d). It turns out that if t = (a+b) · (c+d),
then ad + bc = t − ac − bd . Now instead of solving four subproblems, we only need to
solve three! This idea goes back to Gauss, who found a similar efficient way to multiply two
complex numbers.

Sure, we need to do more additions, but again it turns out that additions are pretty cheap. To
do a quick-and-dirty analysis of the number of operations required by Karatsuba multiplication,
first assume that n = 2s for some integer s. (Note that we can always add 0’s to the front of a
number until the length is a power of two, so this assumption holds without loss of generality.)
Letting T (n) denote the number of multiplications of pairs of 1-digit numbers required to
compute the product of two n-digit numbers, Karatsuba’s algorithm gives T (n) = 3T (n/2),
since we’ve divided the problem into three recursive calls to multiplication of length n/2
numbers. [Note, we are cheating a bit here, since (a + b) and (c + d) might actually be
n/2 + 1 digit numbers, but lets ignore this for now · · ·] Hence we have the following:

T (n) = 3T (n/2) = 32T (n/4) = · · · = 3sT (n/2s)

Since we assumed that n = 2s , we have that T (n/2s) = T (1) = 1 since multiplying two
1-digit numbers counts as 1 basic operation. Hence T (n) = 3s, where n = 2s . Solving for s
yields s = log2 n, and hence we get

T (n) = 3log2 n = 2(log2 3)(log2 n) = nlogw 3 ≤ n1.6

We were pretty sloppy with the above argumentation in a lot of ways. However, we’ll see
a much more principled way of analyzing the runtime of recursive algorithms in the coming
classes, so we won’t sweat about it too much now. The point is that (even if you do it
correctly) the running time of this algorithm scales like n1.6. Thus is much better than the
n2 algorithm that we learned in grade school!

2

1.4 Can we do better

Progress on efficient algorithms for multiplication of n-digit numbers compared continued
beyond Karatsuba’s algorithm. Although you don’t need to know these algorithms for CS
161, it is interesting to review the history of progress on this problem. Toom and Cook (1963)
developed an algorithm that ran in time O(n1.465) by showing how a single n-sized problem
could be broken up into five n/3-sized problems. Schönage and Strassen (1971) developed
an algorithm that runs in time O(n log(n) log log(n)). More than 35 years later, Fürer (2007)
developed an algorithm that ran in time n log(n)2 log∗(n). In case you are wondering what
that weird function log∗(n) (read “log star”) is, it is the number of times you have to apply the
logarithm function log() iteratively to n in order to get down to something ≤ 1. For all values
of n less than the estimated number of atoms in the universe, the value of log∗(n) (with base
2) is less than 5. So log∗(n) is a really really really slowly growing function of n. Finally,
Harvey and van der Hoeven (2019) gave an algorithm that runs in time O(n log n). This is
conjectured to be optimal. It is quite amazing that the seemingly simple (and old) question of
multiplying two numbers has proved to be so mysterious and has seen new research advances
as recently as 2019. This is what makes the study of algorithms so exciting!

2 Practice with Pseudo-code

Let’s now shift gears a bit from algorithms, and practice some C++. It’s important for use
to be able to take our ideas and convert them into code. Generally speaking, the following
approach to solving problems is critical.

• Read the problem carefully and make sure you understand what you’re trying to solve.
This might require that you run through a few examples, by hand, just like we did in
lecture.

• Try to figure out a correct solution to your problem. Usually, this comes down to
figuring out how you would do it by hand, and then trying to convert this into a step-
by-step process: an algorithm.

• Write down your proposed solution in pseudo-code. We will go through a few examples,
but generally speaking, pseudo-code is where you can work through edge-cases, figure
out what steps you’re missing, and really just jot down everything you need.

• Convert your pseudo-code to code. This means you can convert your code to Python,
C++, etc. Generally, you’ll be converting your code to one of a few languages, but it
could be any!

2.1 Finding the minimum element in a collection of elements

Let’s start with a simple problem. We want to find the smallest element in an arbitrary
collection. This is what the pseudo-code might look like for this problem:

algorithm findMinOfVector

3

input: a vector of integers nums
output: smallest integer within nums
minSoFar = infinity
for each element num in nums

minSoFar = min(minSoFar, num)
return minSoFar

This is a very simple algorithm, so we’re pretty sure it’s right. We’ll jump straight to the
last step above then, were we can to convert this function. This is what the corresponding
pseudo-code looks like:

#inc l ude <vec to r >
#inc l ude < l i m i t s >

i n t f i n dM inOfVec to r (const s t d : : v e c t o r < i n t >& nums) {
i n t minSoFar = s t d : : n ume r i c_ l im i t s < i n t > : : max () ;
f o r (i n t i = 0 ; i < nums . s i z e () ; i ++) {

minSoFar = s t d : : min (minSoFar , nums [i]) ;
}
r e tu rn minSoFar ;

}

You should be comfortable going back-and-forth between the options above. A few things to
keep in-mind in the above code:

• auto

• range-based for-loops

• size_t (though not applicable with range-based for loop)

Also, check-out the course website C++ resources for more.

2.2 Practice Spotting Bugs in Pseudo-code

Another reason why pseudo-code is useful, is that it can be a low-commitment way to find
bugs in your code. Before you actually get around to writing your code (which can take a lot
of time, and requires you know the syntax for your language), it’s very useful to read your
pseudo-code and see if there are any bugs.

Let’s try it out.

• What does the algorithm below say it does?

• What issues prevent the algorithm from being correct?

algorithm findSecondSmallest
input: list of integers nums, where size of nums > 1
output: the second smallest element in nums
firstSmallest = -infinity

4

secondSmallest = -infinity
for each element num in nums

if num < firstSmallest
firstSmallest = num
secondSmallest = firstSmallest

else if num < secondSmallest
secondSmallest = num

return num

The first issue is with how we’re setting the initial values for firstSmallest and secondSmallest.
They should be set to a value which is trivially larger than all other values (eg, infinity).

The second issue has to do with the order in which we’re updating the firstSmallest
and secondSmallest when we find an element num that’s smaller. We need to first set
our secondSmallest variable to our firstSmallest (since we found a smaller number,
our previous smallest is now the second smallest), and then set our firstSmallest to the
number we just found.

The last issue with this code with the our return statement. First of all, num is likely our
of scope at this point, and is not that we want to return. What we want to return is
secondSmallest.

With the fixes discussed above, our pseudocode should look like this:

algorithm findSecondSmallest
input: list of integers nums, where size of nums > 1
output: the second smallest element in nums
firstSmallest = infinity
secondSmallest = infinity
for each element num in nums

if num < firstSmallest
secondSmallest = firstSmallest
firstSmallest = num

else if num < secondSmallest
secondSmallest = num

return secondSmallest

2.3 Planning an Algorithm with Pseudocode

The next useful thing about pseudocode is that it helps us plan algorithms. We can plan and
write out our pseudocode without ever having to think about syntax, or issues that we’ll likely
run into when actually trying to write the code. Let’s work through an example.

Problem: Kanye West wants to make sure he’s the only person named Kanye West in the
world fast. Write a function that takes in both a vector of all names in the world sorted in
alphabetical order along with a target name (e.g. “Kanye West”), and returns whether or not

5

the target name appears no more than once in the vector.

• What are inputs and outputs?

• How would you approach this at a high-level?

You might write something like this:

algorithm findIfNameIsUnique
input: sorted vector allNames, targetName
output: true if targetName appears once, false otherwise

for each element name in allNames
if name == targetName

if next name == targetName
return false

else
return true

return true

Once you have the initial version of the pseudo-code written, you might want to refine it
further, by writing a bit more. Eventually, it looks almost like real code (see below), at which
point, you can probably get started on actually writing out the code.

algorithm findIfNameIsUnique
input: sorted vector allNames, targetName
output: true if targetName appears once, false otherwise

start = 0
end = allNames.size() - 1
while start <= end

midIndex = (start + end) / 2
if allNames[midIndex] == targetName

if neighboring name(s) are not targetName
return true

else
return false

else if allNames[midIndex] < targetName
start = midIndex + 1

else
end = midIndex - 1

return true // does not appear

6

	Karatsuba Integer Multiplication Cont.
	Divide and Conquer
	Recurrence Relation
	Divide and conquer (take 2)
	Can we do better

	Practice with Pseudo-code
	Finding the minimum element in a collection of elements
	Practice Spotting Bugs in Pseudo-code
	Planning an Algorithm with Pseudocode

