
COMP 285 (NC A&T, Spr ‘22) Lecture 0

Adapted From Virginia Williams’ lecture notes. Additional credits: J. Su, W. Yang, Gregory
Valiant, Mary Wootters, Aviad Rubinstein, Sami Alsheikh.

Introduction

1 Logistics

The course website is at https://comp285.ml. All course information is available on the
website.

2 Why are you here?

Most of you are here because this class is required. But why is it required?

1. Algorithms are fundamental to all areas of CS: Algorithms are the backbone of
computer science. Wherever computer science reaches, an algorithm is there, and the
classical algorithmic design paradigms that we cover re-occur throughout all areas of
CS.

For example, COMP 350 (operating systems) leverages scheduling algorithms and effi-
cient data structures, COMP 322 (internet systems) crucially uses shortest-path algo-
rithms, COMP 365 (AI & Machine Learning) leverages fast geometric algorithms and
similarity search, COMP 420 (applied network security) leverages fast number theoretic
and algebraic algorithms. We’ll discuss applications to all these subjects in this class.

Algorithms and the computational perspective (the “computational lens”) has also been
fruitfully applied to other areas, such as physics (e.g. quantum computing), economics
(e.g. algorithmic game theory), and biology (e.g. for studying evolutions, as a surpris-
ingly efficient algorithm that searches the space of genotypes).

2. Algorithms are useful: Algorithms are useful: Much of the progress that has occurred
in tech/industry is due to the dual developments of improved hardware (a la “Moore’s
Law”—a prediction made in 1965 by the co-founder of Intel that the density of transis-
tors on integrated circuits would double every year or two), and improved algorithms. In
fact, the faster computers get, the bigger the discrepancy is between what can be ac-
complished with fast algorithms vs what can be accomplished with slow algorithms
Industry needs to continue developing new algorithms for the problems of tomorrow,
and you can help contribute.

3. Algorithms are fun! The design and analysis of algorithms requires a combination of
creativity and mathematical precision. It is both an art and a science, and hopefully at

1

https://comp285.ml

least some of you will come to love this combination. One other reason it is so much fun
is that algorithmic surprises abound. Hopefully this class will make you re-think what
you thought was algorithmically possible, and cause you to constantly ask “is there a
better algorithm for this task?”. Part of the fun is that Algorithms is still a young area,
and there are still many mysteries, and many problems for which (we suspect that) we
still do not know the best algorithms. This is what makes research in Algorithms so fun
and exciting, and hopefully some of you will decide to continue in this direction.

3 Etymology of the world ”Algorithm“

As a round-about way of describing the etymology of the word ”Algorithm“, pause for
a minute and consider how remarkable it is that 3rd graders can actually multiply large
numbers. Its really amazing that anyone, let alone an 8-yr old, can multiply two 10-digit
numbers. One reason multiplication is so easy for us is because we have a great data
structure for numbers—we represent numbers using base-10 (Arabic) numerals, and
this lends itself to easy arithmetic.

Why were romans so bad at multiplication? Well, imagine multiplying using roman
numerals. What is LXXXIX times CM? The only way I can imagine computing this
is to first translate the numbers into Arabic numerals [LXXXIX = 50 + 10 + 10 +
10 + (−1) + 10 = 89, and CM = (−100) + 1000 = 900] then multiplying those the
standard way. Roman numerals seem like a pretty lousy data structure if you want to
do arithmetic.

The word ”Algorithm“ is a mangled transliteration of the name “al-Khwarizmi.” Al-
Khwarizmi was a 9th-century Persian polymath, born in present-day Uzbekistan, who
studied and worked in Baghdad during the Abbassid Caliphate; around 820 AD he
was appointed as the astronomer and head of the library of the House of Wisdom in
Baghdad. He wrote several influential books, including one with the title [something like]
“On the Calculation with Hindu Numerals”, which described how to do arithmetic using
Arabic numerals (aka Arabic-Hindu,or just Hindu numerals). The original manuscript
was lost, though a Latin translation from the 1100’s introduced this number system to
Europe, and is responsible for why we use Arabic numerals today. (You can imagine
how happy a 12th century tax collector would have been with this new ability to easily
do arithmetic....) [The old French word algorisme meant “the Arabic numerals system”,
and only later did it come to mean a general recipe for solving computational problems.]

4 Karatsuba Integer Multiplication

4.1 The problem

Suppose you have two large numbers, and you want to multiply them. Of course, you
all know how to solve this problem: you learned an algorithm (which we’ll call the

2

“grade-school algorithm”) when you were in grade school. The question is, can we do
better?

In order to understand this, we need to talk at least a little bit about what we mean
by better. How do we measure the running time of an algorithm? It’s tempting to
measure it in units of time—say, milliseconds on a computer. However, this doesn’t
really capture the running time of an algorithm. Rather, it captures the running time of
an algorithm, with a particular implementation, on a particular piece of hardware. For
example, grade-school multiplication is much faster on a computer than by hand, but
it’s still the same algorithm in both cases.

Instead, we’ll focus on how fast the running time scales as a function of the input. We
will be a bit more precise about this in the next lecture, but for now, we’ll define this
notion by example. Suppose we use the grade-school algorithm to multiply two n-digit
numbers. The bulk of the work is taken up by multiplying every pair of digits together.
For example, in 1234× 6789, we have to multiply 9× 4, 9× 3, 9× 2, 9× 1, 8× 3, etc.
There are n2 such pairs, so we’ll say that this algorithm has a running time that scales
like n2.

Why should we care about this measure of complexity? We’ll talk about this more
next lecture, but intuitively, this scaling behavior is the thing that really matters as n
gets large. Suppose we had two algorithms, one of which had running time that scaled
like n2 and one which scaled like n1.6. Suppose that running an algorithm by hand is
10000 times slower than running an algorithm on a computer. For large enough n,
10000n1.6 < n2, and intuitively this means it would actually be faster to run the n1.6

algorithm by hand than the n2 algorithm on a computer. So we can definitively say that
the n1.6 algorithm is “faster,” because for large n, it will be faster, no matter how the
algorithm is implemented and no matter what hardware it’s running on.

With that in mind, our question is now this: can we multiply two n-digit integers faster
than the grade-school algorithm? That is, with a running time that scales faster than
n2?

One try might be to store the answers ahead of time, or at least store partial answers.
For example, we could store the products of all pairs of n-digit numbers, and then just
look up the pair we need. This does result in performance gains, however, and also
leads to exponential storage costs. (For example, if n = 100, we would need to store
a table of 102n = 10200 products. Note that the number of atoms in the universe is
only ≈ 1080. . . .) So we’ll have to do something more clever.

3

	Logistics
	Why are you here?
	Etymology of the world ''Algorithm``
	Karatsuba Integer Multiplication
	The problem

