
[SOL] Practice Questions for COMP285
Final

The following are questions meant to help you practice, and cannot be
submitted for a grade.

Important Notes

● It is meant to give you a chance to do some practice questions after
having reviewed the slides, quizzes, in-class exercises, homeworks,
etc.

● It should give a rough sense of some ways questions might be posed,
though there’s no guarantee that the actual final will have the exact
same format (at a minimum, one difference is that the actual final will
show the point values associated with the questions).

● It should give a rough idea of the level of mastery expected generally,
though more/less mastery may be expected for any given topic.

Thanks for reading the notes above - the big picture thing is that I want to
be sure you use this resource appropriately, while at the same time do
not neglect the many other more comprehensive resources!

Measuring Performance
1. What is the worst-case time complexity and space complexity of the below? Remember to

provide a tight upper bound with Big-O, and justify your answer.

algorithm findSumOfUniqueOccurrences

input: vector<int> nums

output: sum of each element in nums that appears exactly once

numOccurrences = new unordered_map of int to int

for each element n in nums

if numOccurrences.contains(n)

numOccurrences[n] += 1

else

numOccurrences[n] = 1

answer = 0

for each key-value pair k, v in numOccurrences

if v == 1

answer += k

return answer

Time complexity: n = the size of nums. The first for-loop is O(n) with O(1) work happening inside
the loop (the if-statements and key checks / key updates are constant time). The second
for-loop goes through all key-value pairs, which, in the worst case, is O(n) as well with O(1) work
happening inside. So this is O(n) + O(n) work which simplifies to O(n).

Space Complexity: n = the size of nums. We are creating a new data structure which, in the
worst case, will have to store O(n) keys and values. So, our space complexity is O(n).

2. What is the worst case time complexity and space complexity of the below? Remember to
provide a tighter upper bound with Big-O, and justify your answer.

void doSomething(std::vector<int>& nums) {

for (int i = 0; i < nums.size(); i++) {

for (int j = 0; j < 10; j++) {

std::cout << "hi" << std::endl;

}

}

for (int i = 0; i < 10; i++) {

for (int j = 0; j < nums.size(); j++) {

for (int k = j; k < nums.size(); k++) {

std::cout << "hello" << std::endl;

}

}

}

}

Time complexity: n = the size of `nums`.. For the first double-nested for loop, the innermost O(1)
statement runs O(n * 10) times, which simplifies to O(n). The triple-nested for-loop ultimately
simplifies to O(n2). This is because the two innermost loops will run 1 + 2 + 3 + … n - 1 =
O(n2) times, and the outerloop multiplies that by 10, but we drop the multiplicative constant.
The amount of work done on the inside is constant. So we have O(n) + O(n2), which
simplifies to O(n2).

Space complexity: n = the size of `nums`.. We are not creating any additional space as there are
no new data structures created and no recursive stack frames that build up. So, our space
complexity is O(1).

3. Bob has analyzed the best-case time complexity for binary search as O(1) because there
could be an array with one element in it containing exactly the desired target. If Bob is
correct, explain. If not, what is the correct best-case time complexity and what input
produces it?

The best-case time complexity is indeed O(1), but it is not shown by the example Bob provided.
We need to find the best-case time complexity when run on a large input. So, because binary
search starts by looking at the middle element, if the middle element was the target we were
searching for (even with a very large array) then we would only do O(1) work. An example of
such an input would be vec = {1, 2, 3, 4, 5, …., 99, 100} with a target = 50.

Trees
4. Order the following data structures from most general to most specific:

Trees, Red-Black Trees, Binary Trees, Graphs, Binary Search Trees

Graphs, Trees, Binary Trees, Binary Search Trees, Red-Black Trees

For questions 5 - 8, refer to the information below.

We want to write findSumOfTreeLeaves, which finds the sum of the values of all leaf nodes
given the root of a binary tree.

5. What should findSumOfBinaryTreeLeaves return when called on the tree below?

5 + 5 + 8 = 18

6. What would an in-order traversal print out for the tree above?
5, 3, -3, 5, 1, 8

7. Complete findSumOfBinaryTreeLeaves below with recursion. (Do not worry about the
distinction between -> and . for accessing variables / functions in the pseudocode. Also,
you can access fields as follows):
● root.isLeaf - returns a boolean for whether or not the node root is a leaf
● root.value - returns the value of node root.
● root.left - returns the left child.
● root.right - returns the right child.

algorithm findSumOfBinaryTreeLeaves

input: TreeNode root which represents the root of the tree

output: the sum of the value of all tree leaves

if root == nullptr

return 0

if root.isLeaf
return root.value

leftSum = findSumOfBinaryTreeLeaves(root.left)
rightSum = findSumOfBinaryTreeLeaves(root.right)
return leftSum + rightSum

8. Assume the function above is run on a balanced Red-Black tree. What is the time
complexity and space complexity of this recursive algorithm? Provide a tight upper-bound
with Big-O in terms of n (number of nodes in the tree) and justify your answer.

Time Complexity: there will be O(n) recursive calls made (one for each node in the tree) and the
work done within each recursive call is O(1) (simple condition checks and addition). The fact
that the tree is balanced does not change the fact that we have to visit each node. So, the
total time complexity would be O(n).

Space complexity: following the recursion tree, the tallest that the stack frames will build up
before beginning to be popped off is proportional to the height of a tree. The height of a
balanced binary tree is O(log(n)). Each of the recursive stack frames stores O(1) data. So,
the total space complexity would be O(log(n)).

9. Explain whether it is more time efficient to be running “search” on a balanced BST or
unbalanced BST. Provide a tight upper-bound with Big-O in terms of n (number of nodes in
the tree) for each case.

Search is more efficient on a balanced BST, as in the worst-case, we will have to go all the way
down to a leaf, which would be O(height of tree). The height of the tree in the balanced BST
case is log(n) while in a completely unbalanced tree it would be n. So it is more efficient to
run search on a balanced BST O(log(n)) rather than not (O(n)).

10. Provide a tight upper-bound with Big-O in terms of n (number of nodes in the tree) for the
time complexity of the best-case for search on a BST. Describe an input for which this
happens.

O(1). This can occur on a large BST when the target we are searching for is equivalent to the
root.

Graphs
11. Which of the below are true? Select all that apply.

Bellman-Ford can be used even if there are negative-weight edges.
Dijkstra’s can be used even if there are negative-weight edges.
When both can apply, we should prefer Dijkstra’s over Bellman-Ford for time efficiency.
Dijkstra’s is an example of a Greedy Algorithm.

For questions 12 - 15, refer to the below.

There are n cities, some of which are connected by roads. If there is a road from a to b, and from
b to c, then we say that a and c are connected indirectly. A province is a group of directly or
indirectly connected cities, and no other cities outside the group are reachable.

12. In order to solve this problem, we can represent this as a graph. What are the nodes and
edges?

The nodes are each of the cities and there is an undirected edge from a to b if there is a road
connecting cities a and b.

13. We want to find the total number of provinces. How would you solve this problem leveraging
graph algorithms we’ve covered? Explain which algorithm(s) you would use in words AND
how you would use it.

We could find the number of connected components using BFS / DFS. We will choose BFS
arbitrarily. We increment a global totalProvinces counter then call BFS on an unvisited node,
marking all nodes reachable from the selected node as visited. We repeat the previous step,
continually incrementing totalProvinces each time we have to launch a BFS that will span an
entire connected component. At the end, we return totalProvinces as our answer.

14. Now suppose the roads have associated distances, and we want to find the cost of the
shortest path between a city m and n, if it exists. Which algorithm(s) that we’ve covered
would be most appropriate and efficient to solve this problem? Explain which algorithm(s)
you would use in words AND how you would use it.

We could run Dijkstra’s starting at m and directly use the result corresponding to the cost to
reach n at the end of Dijkstra’s as our answer.

15. One province leader is interested in building an underground tunnel between the 2 closest
cities. Which algorithm(s) that we’ve covered would be most appropriate and efficient to
solve this problem? Explain which algorithm(s) you would use in words AND how you would
use it.

We could use an all-pairs shortest path algorithm like Floyd-Warshall to find the pairwise
shortest distances between each of the cities. We would then look at the pair of cities with
the minimum distance and return this pair of cities as our answer.

MSTs

16. Given the graph above, which of the following are valid Spanning Trees? Note that we are not
looking for Minimum Spanning Trees. Select all that apply.

A-D, A-F, B-C, C-F
A-B, A-D, A-F, C-F, E-F
A-C, B-D, C-F, D-F, E-F
A-D, A-F, C-F, D-F, E-F
A-C, A-F, B-D, C-F, D-F, E-F

17. Given the above graph, what's the weight of the minimum spanning tree?
2

For the following questions, assume we run the following version of Prim's on the graph above.

algorithm Prims

Input: Weighted, Undirected, connected Graph G=(V,E) with edge weights we
Output: A Tree T=(V,E'), with E'⊆E that minimizes the edge weight sum

for all u ∈ V :

cost(u) = ∞
prev(u) = nil

Pick any initial node u0
cost(u0) = 0

unvisited = makequeue(V) (priority queue, using cost-values as keys)

while unvisited is not empty:

v = extractmin(unvisited)

for each {v, z} ∈ E:

if cost(z) > w(v, z) and unvisited.contains(Z):

cost(z) = w(v, z)

prev(z) = v

decreasekey(unvisited, z)

18. Which of the following will be the correct cost array after two iterations of the while loop?
Assume we start at node D. Select one.
● cost(A) = -2, cost(B) = 1, cost(C) = inf, cost(D) = 0, cost(E) = inf, cost(F) = 9
● cost(A) = -2, cost(B) = 5, cost(C) = 3, cost(D) = 0, cost(E) = inf, cost(F) = 9
● cost(A) = -2, cost(B) = 1, cost(C) = 3, cost(D) = 0, cost(E) = inf, cost(F) = 8
● cost(A) = -2, cost(B) = 1, cost(C) = 3, cost(D) = 0, cost(E) = inf, cost(F) = 9

19. If you run Prim's algorithm starting at node A, list the sequence of nodes you'll remove from
the priority queue in order.

A, D, B, C, F, E

20. What's the order of edges visited by Kruskal's? Include edges that are skipped (put "skipped"
next to the edge if applicable), and assume we stop after picking |V|-1 edges.

E-F, A-D, B-D, A-C, C-F

21. In general, which of the following is true about Kruskal's and Prim's? Select all that apply.
Kruskal's incorrectly outputs on graphs with negative edges
Kruskal's correctly outputs on graphs with negative cycles
Prim's will produce a correct result on graphs with negative cycles
Prim's and Kruskal's will output different MSTs on the same graph even if they follow the
same tie-breaking convention (smallest labeled nodes/edges first)

Network Flow
Consider the flow network below.

22. Draw the edges and weights of the residual graph for the flow network below.

23. Identify an augmenting path in the residual graph if there is one. Note: we are looking for a
sequence of vertex labels here that starts with s and ends at t.

s, v1, v3, t

24. Update the flows on the original network accordingly with a drawing below.

25. Suppose we are optimizing a toy manufacturing facility. For a toy to be successfully created,
it must go through an A-machine which creates the toy and then a B-machine which
packages it. We also have conveyor belts that can move toys from A-machines to
B-machines. Each conveyor belt has a max speed given in toy(s) per minute (tpm). Each
machine also has a max tpm that they produce. Draw a transformed flow network for the toy
factory below for which the max flow will tell us how many toys we can produce when
running optimally. You do not need to label the vertices, but there must be a source s and a
sink t, and all edge capacities must be specified.

26. What does the max flow on the transformed graph represent?
It represents the maximum number of toys that can be produced per minute.

Greedy, Recursion
A kiwi bird is trying to cross a river by hopping across rocks in the stream. The kiwi can hop at

most k feet at a time, and rocks are placed at various parts of the stream. For example, if our
kiwi can hop at most 3 feet, then it'll take 4 hops to make it across this river on the following
set of rocks:

If the rocks were positioned differently, our kiwi wouldn't be able to make it across since it
wouldn't be able to jump far enough to safely make it to the next rock (assuming k = 3).

We want to write an algorithm named findMinBirdHops, which takes in as input the k and
vector<int> rocks that describe the rock positions and the distance to the far shore, and
computes the minimum number of hops needed to cross the river. It should return -1 if it isn't
possible for our bird to safely make it to the other side of the river. Here are some examples:

// should output 4 (start, rock 3, rock 6, rock 8, end)

findMinBirdHops(3, {0, 1, 3, 4, 5, 6, 8, 10})

// should output 3 (start, rock 4, rock 8, end)

findMinBirdHops(4, {0, 1, 3, 4, 5, 6, 8, 10})

// should output -1 (after rock 3, no rocks near enough to continue)

findMinBirdHops(3, {0, 1, 3, 7, 8, 10})

Note: The kiwi can always hop less than k feet. The first element in the array is always 0 (the
start). The last element in the array should always be the distance to the far side of the river
(the end).

27. What should findMinBirdHops output in this case? 6
findMinBirdHops(3, {0, 1, 3, 4, 7, 8, 11, 12})

28. What should birdHops output in this case? 1
findMinBirdHops(5, {0, 4})

29. What should birdHops output in this case? 0
findMinBirdHops(3, {0, 4})

30. Describe a greedy algorithm that solves this problem. You do not need to write code, but we
will expect you to be detailed enough so that we could design an algorithm from your
response. Please include how you would update and return the minimum # of hops.

Keep track of minHops as a variable. At each step, hop as far forward as much as possible,
ensuring that we can (if we cannot, return -1). Every time we hop forward, increment minHops.
Afterward, we return minHops as our final answer.

31. Now let's try to write a brute-force recursive version. Given the following code, fill in the
blanks so that it will correctly compute the minimum hops.

algorithm findBirdHops

input: int k, vector<int> of N rocks

output: optimal # of bird hops

return birdHopsHelper(______, ________, _______) // k, rocks, 0

algorithm findBirdHopsHelper

input: int k, vector<int> of N rocks, int index

output: <left unspecified for this question>

if _________ // N - 1 == index

return 0

minHops = MAX_INT // predefined constant

for i = index + 1, index + 2, … N - 1

if rocks[index] + k >= rocks[i]

result = _____________ // findBirdHopsHelper(k, rocks, i)

if result != -1

minHops = min(minHops, 1 + result)

if minHops == MAX_INT

return ______ // -1

return minHops

Greedy, Dynamic Programming
Consider the following problem:

Imagine you had a vending machine that dispensed n different types of snacks. Snack i

has calories[i] calories and costs price[i] dollars. Assume the vending machine
will never run out of any snack (i.e. you can buy as many of one type of snack as you
would like). Given X dollars, what's the most amount of calories you can buy from the
machine?

For example, given the following array calories and array price, if X = 10, then the total
calories we could buy is 48 (buy the i=0 snack once and the i=3 snack twice).

calories = {30, 14, 16, 9}

price = {6, 3, 4, 2}

32. Consider the following greedy algorithm:
Pick the snack that has the best calorie to price ratio and buy as many of them as
possible until you no longer have enough money to do so. Then buy the snack with the
next best ratio as much as possible. Each time, add the total calories gained from the
purchases to a totalCalories variable. Repeat this process until you don't have enough
money to buy any snack. Return totalCalories. The calorie to price ratio of snack i is
calories[i]/price[i].

Given calorie and price arrays above, what would this algorithm output when X = 10?
44. We get here by picking snack 0 first since it has 5 calories/$ and then snack 1 with 4.66

calories/$.

33. Now consider another greedy algorithm:
Pick the snack that has the most calories and buy as many of them as possible until you
no longer have enough money to do so. Then buy the snack with the next most calories
as much as possible. Each time, add the total calories gained from the purchases to a
totalCalories variable. Repeat this process until you don't have enough money to buy
any snack. Return totalCalories.

Given calorie and price arrays above, what would this algorithm output when X = 10?
46. We get here by picking snack 0 first then snack 3.

34. Using the answers from above, describe why both greedy approaches won't work in this
case. (Proof by counterexample)

Since neither greedy algorithm produces the optimum solution based on the above, we cannot
say that either greedy approach will work.

Now let's examine a Dynamic Program algorithm to solve this problem.

35. Let's say we initialize an array of zeros called DP of length X+1. How should we define
DP[j]? We are looking for a sentence which describes what DP[j] represents in words.
● DP[j] is the most amount of calories you can get by buying only snack j

● DP[j] is the most amount of calories you can get with j dollars
● DP[j] is the calories earned if you add the calories of all snacks from 0 to j

● DP[j] is the total price of buying one of each snack from 0 to j

● None of the above

36. What should our base case(s) be?
DP[0] = 0. We should also initialize everything else to 0 in our table before we solve the problem
bottom-up.

37. Describe the recursive subproblem for this problem in the blank below.

DP[j] = max(DP[j], calories[i] + DP[j-price[i]])

for all i from 0 to n-1

(Recall that n is the # of types of snacks, aka price.size())

38. What special conditions, if any, do we need to watch out for? What order should we solve the
subproblems in, and what will we return as our final answer?

If j - price[i] is out-of-range for a given i, we do not want to include that operation. This can be
done with an if-statement in the code.

We should solve the subproblems from 0, 1, … X. We return DP[X] as our final answer.

39. What is the time complexity of this DP approach?
The number of subproblems is O(x) where x is the value of X. The time per sub-problem is O(n)

where n is the size of price and calories. So, our total runtime is O(n * x).

40. We can also solve DP questions top-down with memoization. In your own words, explain
what memoization is and when it is useful.

Memoization is the process by which we save results from previously computed subproblems
for re-use later. It is only useful if we have overlapping subproblems in our recursive tree.
Otherwise, there are no savings to be gained from saving results that will only be used once.

Dynamic Programming

Consider the following problem:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram
below). The robot can only move either down or right at any point in time. The robot is
trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
But, there are some squares which are magnet traps (gray circles) that the robot cannot
step on. For inputs, we are given the dimensions m and n, as well as a vector<pair<int,
int>> representing the coordinates of all magnet traps. How many possible unique paths
are there?

41. Let's say we initialize a 2D table of size m by n. How should we define DP[i][j] in words?
DP[i][j] is the number of paths we can take to reach coordinate i, j on the grid.

42. What should our base case(s) be?
DP[i][0] = 0 for i = 0...m
DP[0][j] = 0 for j = 0...n
DP[i][j] = 0 for all i, j in our magnet traps list (or this can be taken care of in later answers).

43. Describe the recursive subproblem for this problem.
DP[i][j] = DP[i-1][j] + DP[i][j-1]

44. What special conditions, if any, do we need to watch out for? What order should we solve the
subproblems in and what should we return as our final answer?

We should not update magnet squares with the recurrence above, as there should be no way to
reach them (see base case).

We should solve the subproblems row-by-row or column-by-column.
We should return DP[m - 1][n - 1] as our final answer.

45. What is the time complexity of this DP approach?
The number of subproblems is O(m * n) and each subproblem is just an addition which takes

O(1) time. So our total runtime is O(m * n).

Brute Force

Before smartphones, people would text with a keypad. There was a predictive technology called
“T9” which would allow you to press a key once for any letter that might be on that number, and
T9 would show you some word options. For example, pressing 2, 2, 8 might show “bat”, “cat”, or
“act”.

Given a vector<int> of digits (2 - 9), we want to return all possible letter combinations that the
number could represent (including non-valid dictionary words).
Example:
{2, 3} → {“ad”, “ae”, “af”, “bd”, “be”, “bf”, “cd”, “ce”, “cf”}

46. Complete the below (pseudocode is fine).

unordered_map<int, vector<string>> DIGIT_TO_LETTERS = {

{2, {"a", "b", "c"}},

{3, {"d", "e", "f"}},

{4, {"g", "h", "i"}},

{5, {"j", "k", "l"}},

{6, {"m", "n", "o"}},

{7, {"p", "q", "r", "s"}},

{8, {"t", "u", "v"}},

{9, {"w", "x", "y", "z"}},

};

void letterCombinationsHelper(vector<int> digits,

int i, const string currAnswer,

vector<string>& answers) {

if (digits.size() == i) {

answers.push_back(currAnswer);
return;

}

for each letter in DIGIT_TO_LETTERS[digits[i]]
// choose / unchoose not needed because we make a copy of the string
letterCombinationsHelper(digits, i + 1, currAnswer + letter, answers) // explore

}

vector<string> letterCombinations(vector<int> digits) {

vector<string> answers = {};

letterCombinationsHelper(digits, 0, “”, answers)

return answers;

}

47. Suppose we have a function prefixExists(const string currAnswer) which checks an
unordered_set in O(1) time to see whether currAnswer is the prefix of a valid English word.
Would you do this check after the base case of letterCombinationsHelper or filter the results
at the end of letterCombinations before returning the answer? Justify your answer.

We should check after the base case, so that we can prune the search space as we are
exploring to actually improve the runtime in practice. If we filter afterwards, we do not save
any time.

P, NP, and More
48. Given a problem that does not have a polynomial time verifier, which complexity class must

this problem belong to? Select all that apply.
P
NP
NP-Complete
None of the Above

49. If a problem is in NP, which of the following COULD be true? Select all that apply.
The solution to this problem could be verifiable in polynomial time
The problem could be solved in polynomial time
The problem can only be verified in exponential time

50. If P = NP, which of the following statements are true? Select all that apply.
The best algorithms for NP problems will be exponential.
All problems in NP will be solvable in polynomial time.
RSA Encryption would be broken

